摘要:
A generalized printhead control model is provided herein as a basis for configuring printhead control software that will operate any selected printhead or group of printheads. The subject model covers a hierarchy of classes for the attributes of software that controls the printheads in a system, such as for producing a biopolymer array.
摘要:
Embodiments are directed to a methods and systems for nucleic acid detection using enzymatic reactions on a microarray. In one embodiment, a probe comprising a probe nucleotide sequence and a substantially homogenous sequence extender portion is provided on the surface of a microarray. The probe nucleotide sequence is hybridized to the complementary target nucleotide sequence. A solution containing enzymes and detection elements is applied to the hybridized probe structure. The enzyme determines the composition of the nucleotide structure of the extender and creates a complementary homogenous sequence extender structure between the target nucleotide sequence and the microarray surface structure. The detection elements in the solution are bound to the extender structure, thus allowing detection using an appropriate detector system.
摘要:
The present invention provides novel processes for the large scale preparation of arrays of polymer sequences wherein each array includes a plurality of different, positionally distinct polymer sequences having known monomer sequences. The methods of the invention combine high throughput process steps with high resolution photolithographic techniques in the manufacture of polymer arrays.
摘要:
The present invention relates to a method of patterning molecules on a substrate using a micro-contact printing process, to a substrate produced by said method and to uses of said substrate. It also relates to a device for performing the method according to the present invention.
摘要:
Composition and methods for amplifying and detecting solution-state polynucleotide targets in a single device are described. In one aspect, a method for a coupled isothermal amplification and detection process utilizes a coated solid support, including a solid substrate, a cationic layer, and a plurality of target-specific probes attached to the coated solid support. Polynucleotide targets in the sample are amplified by an isothermal amplification process involving in situ hybridization onto the coated solid support. The entire process can be carried out with a high degree of specificity under low salt conditions in less than one hour. Further aspects of the present invention include methods for coupled hybridization/detection of polynucleotide targets, coated silicon biosensors optimized for use with the coupled detection systems to provide visual detection of polynucleotide targets under visible light conditions, and kits for practicing in the above described methods.
摘要:
The invention disclosed herein comprises methods of using microarrays to simplify analysis and characterization of genes and their function. In one aspect of the invention the methods are used to identify and characterize antibodies having binding affinity for a specific target antigen. The invention further comprises a method of determining gene expression at the protein level comprising contacting an array of characterized or uncharacterized antibodies on a solid surface with one or more proteins and identifying the antibodies to which said protein(s) binds. This method can be additionally used to compare the protein expression in two different populations of cells, such as normal cells and cancer cells or resting cells and stimulated cells. A further aspect of the invention comprises a method of determining gene expression at the protein level comprising contacting a microarray of nucleic acid samples derived from a variety of different sources with one or more nucleic acid probes then identifying the sample or samples to which the probe binds.
摘要:
A method of sorting mixtures of nucleic acid strands comprising hybridizing the strands to an array of immobilized oligonucleotides, each of which includes a constant segment adjacent to a variable segment. The constant segment of the immobilized oligonucleotides can be made complementary to the ends of strands obtained by digesting a double-stranded nucleic acid with a restriction enzyme and restoring the restriction sites, thereby permitting the sorting of strands according to their variable sequences adjacent to their constant terminal restored restriction sites.
摘要:
The present invention overcomes the problems and disadvantages associated with prior art arrays by providing an array comprising a plurality of biological membrane microspots associated with a surface of a substrate that can be produced, used and stored, not in an aqueous environment, but in an environment exposed to air under ambient or controlled humidities. Preferably, the biological membrane microspots comprise a membrane bound protein. Most preferably, the membrane bound protein is a G-protein coupled receptor, an ion channel, a receptor serine/threonine kinase or a receptor tyrosine kinase.
摘要:
The subject of the present invention is a process for aligning a macromolecule (macromolecules) on the surface S of a support, characterized in that the triple line S/A/B (meniscus) resulting from the contact between a solvent A and the surface S and a medium B is caused to move on the said surface S, the said macromolecules having a part, especially an end, anchored on the surface S, the other part, especially the other end, being in solution in the solvent A.The subject of the present invention is also a process for detecting, measuring the intramolecular distance of, separating and/or assaying a macromolecule in a sample in which a process of alignment according to the invention is used.
摘要翻译:本发明的主题是在支撑体的表面S上对准大分子(大分子)的方法,其特征在于由溶剂A和表面S之间的接触导致的三线S / A / B(弯液面) 并使介质B在所述表面S上移动,所述大分子具有锚固在表面S上的一部分,特别是端部,另一部分,特别是另一端处于溶剂A的溶液中。主体 本发明也是用于检测,测量在其中使用根据本发明的取向过程的样品中的大分子的分子间距离,分离和/或分析的方法。
摘要:
The present invention describes a method for identifying one or more of a plurality of sequences differing by one or more single base changes, insertions, deletions, or translocations in a plurality of target nucleotide sequences. The method includes a ligation phase, a capture phase, and a detection phase. The ligation phase utilizes a ligation detection reaction between one oligonucleotide probe, which has a target sequence-specific portion and an addressable array-specific portion, and a second oligonucleotide probe, having a target sequence-specific portion and a detectable label. After the ligation phase, the capture phase is carried out by hybridizing the ligated oligonucleotide probes to a solid support with an array of immobilized capture oligonucleotides at least some of which are complementary to the addressable array-specific portion. Following completion of the capture phase, a detection phase is carried out to detect the labels of ligated oligonucleotide probes hybridized to the solid support.