Anisotropy-based crystalline oxide-on-semiconductor material
    81.
    发明授权
    Anisotropy-based crystalline oxide-on-semiconductor material 失效
    各向异性的半导体晶体氧化物材料

    公开(公告)号:US6093242A

    公开(公告)日:2000-07-25

    申请号:US126527

    申请日:1998-07-30

    摘要: A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

    摘要翻译: 用于半导体应用的半导体结构和器件利用诸如硅的半导体材料的衬底,以及晶体氧化物的薄膜,其单位电池能够显示覆盖衬底表面的各向异性行为。 在该结构内,晶体氧化物的单元电池暴露于影响单元电池的几何形状的面内染色,从而将单元电池的方向依赖的质量相对于衬底排列在易于取向的方向上。 单位单元的方向依赖质量的这种倾向使得器件能够在操作期间获得结构特征的有益优点。 例如,在其中结构的结晶氧化物是钙钛矿,尖晶石或类似相关的立方结构的氧化物的情况下,该结构可以在适当的半导体器件内呈现铁电,压电,热电,电光 ,铁磁性,反铁磁性,磁光学或大介电性质,其协同地耦合到下面的半导体衬底。

    Source/drain structure for semiconductor device

    公开(公告)号:US12040384B2

    公开(公告)日:2024-07-16

    申请号:US17459469

    申请日:2021-08-27

    发明人: Lung Chen

    摘要: The present disclosure describes a semiconductor structure and a method for forming the same. The method can include forming a recess structure in a substrate and forming a first semiconductor layer over the recess structure. The process of forming the first semiconductor layer can include doping first and second portions of the first semiconductor layer with a first n-type dopant having first and second doping concentrations, respectively. The second doping concentration can be greater than the first doping concentration. The method can further include forming a second semiconductor layer over the second portion of the first semiconductor layer. The process of forming the second semiconductor layer can include doping the second semiconductor layer with a second n-type dopant.