Abstract:
A process for producing an olefin oxide which comprises reacting an olefin with oxygen in the presence of a catalyst comprising (a) copper oxide, (b) ruthenium metal or ruthenium oxide and (c) alkaline metal component or alkaline earth metal component.
Abstract:
This invention relates to an organotin-based catalyst system for polyurethane synthesis that is useful in coatings applications. The catalyst has low activity in the absence of oxygen. When a coating mixture comprising the catalyst is sprayed and/or applied to a substrate as a thin film in air, the catalyst is activated. For solvent-based refinish systems comprising hydroxyl and isocyanate species at high solids levels, the catalyst system therefore provides extended viscosity stability, i.e., pot life.
Abstract:
Disclosed is a photocatalyst which is excited when irradiated with visible light and exhibits high photocatalytic activity stably. This photocatalyst has a white hue with little yellow tint. Specifically, titanium oxide particles and a halogenated platinum compound are heated and mixed in a liquid medium, so that the surfaces of the titanium oxide particles are loaded with the halogenated platinum compound; then the pH of the liquid medium is adjusted to 5 or less; and after that, the liquid medium is neutralized if necessary. By such a process, there can be produced a photocatalyst having a specific surface area of 10-100 m2/g, wherein the surfaces of the titanium oxide particles are loaded with the halogenated platinum compound and the b* value of the powder color according to the Hunter color system is not more than 6.
Abstract:
In one embodiment, a reforming catalyst can include indium, tin, and a catalytically effective amount of a group VIII element for one or more reforming reactions. Typically, at least about 25%, by mole, of the indium is an In(3+) species based on the total moles of indium after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C. Usually, no more than about 25%, by mole, of the tin is a Sn(4+) species based on the total moles of tin after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C.
Abstract:
The present invention discloses a Ni-based catalyst useful in selective hydrogenation, comprising the following components supported on an alumina support: (a) 5.0 to 40.0 wt. % of metallic nickel or oxide(s) thereof; (b) 0.01 to 20.0 wt. % of at least one of molybdenum and tungsten, or oxide(s) thereof; (c) 0.01 to 10.0 wt. % of at least one rare earth element or oxide(s) thereof; (d) 0.01 to 2.0 wt. % of at least one metal from Group IA or Group IIA of the Periodic Table or oxide(s) thereof; (e) 0 to 15.0 wt. % of at least one selected from the group consisting of silicon, phosphorus, boron and fluorine, or oxide(s) thereof; and (f) 0 to 10.0 wt. % of at least one metal from Group IVB of the Periodic Table or oxide(s) thereof; with the percentages being based on the total weight of the catalyst. The catalyst is useful in the selective hydrogenation of a pyrolysis gasoline.
Abstract:
A catalyst component comprising Ti, Mg, Al, Cl, and optionally OR1 groups in which R1 is a C1-C20 hydrocarbon group, optionally containing heteroatoms, up to an amount such as to give a molar OR1/Ti ratio lower than 0.5, characterized by the fact that substantially all the titanium atoms are in valence state of 4, that the porosity (PF), measured by the mercury method and due to pores with radius equal to or lower than 1 μm, is at least 0.3 cm3/g, and by the fact that the Cl/Ti molar ratio is lower than 29.The said catalysts are characterized by high morphological stability under the low molecular weight ethylene polymerization conditions while at the same time maintaining characteristics of high activity.
Abstract:
A composite single phase crystalline mixed metal oxide NOx scavenger formed of a solid solution, wherein the solid solution has a well defined single phase crystalline structure, as determined by conventional x-ray Diffraction method; and, a NOx scavenger disposed within the single phase oxide structure, without formation of additional X-ray discrete phase, wherein the NOx scavenger is formed from oxides of an element selected from the group consisting of alkali metals, alkaline earth metals, transition metals, rare earth metals and mixtures thereof. The aforementioned single phase oxide may further posses a cubic fluorite structure and said composite cubic oxide NOx scavenger may be advantageously applied to the control of emissions, of both gaseous and solid or particulate nature, from internal combustions especially engines operating under the principle of compression ignition.
Abstract:
The present invention provides a hydrogenation catalyst, containing a carrier, metal components of nickel, molybdenum and tungsten supported thereon, and an adjuvant component selected from the group consisting of fluorine and phosphor and combination thereof. In another embodiment, the present invention provides a hydrogenation catalyst, containing a carrier and metal components of nickel, molybdenum and tungsten supported thereon, wherein said carrier contains a molecular sieve. The present invention provides further use of said catalyst in the process for hydrogenating hydrocarbon oil. In comparison with a hydrogenation catalyst according to the prior art, the catalyst according to the present invention has a much higher activity.
Abstract:
Photocatalytic procedure for the control of microbiota in indoor environments, that consists of passing the air of an area characterised by a microbiological burden through a surface impregnated and photo-activated with ultraviolet UV-C photons, a base formed by natural magnesium silicate, catalyst semiconductors and impregnations of solutions of highly oxidizing substances being used.
Abstract:
In an embodiment, a method of hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon includes contacting the highly unsaturated hydrocarbon with a catalyst in the presence of hydrogen. The catalyst comprises palladium and an inorganic support having a surface area of from about 4.5 to about 20 m2/g, or alternatively 5 to 14.5 m2/g. The inorganic support may comprise α-alumina treated with a fluoride source. The palladium may be primarily disposed near the surface of the support. In addition, the catalyst may comprise silver distributed throughout the support. In another embodiment, a method of making the foregoing selective hydrogenation catalyst includes contacting a fluorine-containing compound with an inorganic support, heating the support, and adding palladium to the inorganic support. After adding palladium to the support, the support can then be heated again, followed by adding silver to and then heating the support once again.