摘要:
Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
摘要:
A plasma reactor having a reactor chamber and an electrostatic chuck with a surface for holding a workpiece inside the chamber includes a backside gas pressure source coupled to the electrostatic chuck for applying a thermally conductive gas under a selected pressure into a workpiece-surface interface formed whenever a workpiece is held on the surface and an evaporator inside the electrostatic chuck and a refrigeration loop having an expansion valve for controlling flow of coolant through the evaporator. The reactor further includes a temperature sensor in the electrostatic chuck and a memory storing a schedule of changes in RF power or wafer temperature. The reactor further includes a thermal model capable of simulating heat transfer between the evaporator and the surface based upon measurements from the temperature sensor, and a control processor coupled to the thermal model and to the memory and governing the backside gas pressure source in response to a prediction from the model of a change in the selected pressure that would compensate for the next scheduled change in RF power or implement the next scheduled change in wafer temperature.
摘要:
A plasma reactor for processing a workpiece includes a reactor chamber, an electrostatic chuck within the chamber having a top surface for supporting a workpiece and having indentations in the top surface that form enclosed gas flow channels whenever covered by a workpiece resting on the top surface. The reactor further includes thermal control apparatus thermally coupled to the electrostatic chuck, an RF plasma bias power generator coupled to apply RF power to the electrostatic chuck, a pressurized gas supply of a thermally conductive gas, a controllable gas valve coupling the pressurized gas supply to the indentations to facilitate filling the channels with the thermally conductive gas for heat transfer between a backside of a workpiece and the electrostatic chuck at a heat transfer rate that is a function of the pressure against the backside of the workpiece of the thermally conductive gas. The reactor further includes an agile workpiece temperature control loop including (a) a temperature probe in the electrostatic chuck, and (b) a backside gas pressure controller coupled to an output of the temperature probe and responsive to a specified desired temperature, the controller governing the gas valve in response to a difference between the output of the temperature probe and the desired temperature.
摘要:
A plasma reactor having a reactor chamber and an electrostatic chuck with a surface for holding a workpiece inside the chamber includes a backside gas pressure source coupled to the electrostatic chuck for applying a thermally conductive gas under a selected pressure into a workpiece-surface interface formed whenever a workpiece is held on the surface and an evaporator inside the electrostatic chuck and a refrigeration loop having an expansion valve for controlling flow of coolant through the evaporator. The reactor further includes a temperature sensor in the electrostatic chuck and a memory storing a schedule of changes in RF power or wafer temperature. The reactor further includes a thermal model capable of simulating heat transfer between the evaporator and the surface based upon measurements from the temperature sensor, and a control processor coupled to the thermal model and to the memory and governing the backside gas pressure source in response to a prediction from the model of a change in the selected pressure that would compensate for the next scheduled change in RF power or implement the next scheduled change in wafer temperature.
摘要:
A method of processing a workpiece in a plasma reactor chamber includes coupling RF power via an electrode to plasma in the chamber, the RF power being of a variable frequency in a frequency range that includes a fundamental frequency f. The method also includes coupling the electrode to a resonator having a resonant VHF frequency F which is a harmonic of the fundamental frequency f, so as to produce VHF power at the harmonic. The method controls the ratio of power near the fundamental f to power at harmonic F, by controlling the proportion of power from the generator that is up-converted from f to F, so as to control plasma ion density distribution.
摘要:
Embodiments of the invention relate to a substrate etching system and process. In one embodiment, a method may include depositing material on the substrate during a deposition process, etching a first layer of the substrate during a first etch process, and etching a second layer of the substrate during a second etch process, wherein a first bias power is applied to the substrate during the first process, and wherein a second bias power is applied to the substrate during the second etch process. In another embodiment, a system may include a gas delivery system containing a first gas panel for supplying a first gas to a chamber, a second gas panel for supplying a second gas to the chamber, and a plurality of flow controllers for directing the gases to the chamber to facilitate rapid gas transitioning between the gases to and from the chamber and the panels.
摘要:
The present invention generally comprises an electrostatic chuck base, an electrostatic chuck assembly, and a puck for the electrostatic chuck assembly. Precisely etching a substrate within a plasma chamber may be a challenge because the plasma within the chamber may cause the temperature across the substrate to be non-uniform. A temperature gradient may exist across the substrate such that the edge of the substrate is at a different temperature compared to the center of the substrate. When the temperature of the substrate is not uniform, features may not be uniformly etched into the various layers of the structure disposed above the substrate. A dual zone electrostatic chuck assembly may compensate for temperature gradients across a substrate surface.
摘要:
The invention is embodied in a plasma reactor for processing a semiconductor wafer, the reactor having a gas distribution plate including a front plate in the chamber and a back plate on an external side of the front plate, the gas distribution plate comprising a gas manifold adjacent the back plate, the back and front plates bonded together and forming an assembly. The assembly includes an array of holes through the front plate and communicating with the chamber, at least one gas flow-controlling orifice through the back plate and communicating between the manifold and at least one of the holes, the orifice having a diameter that determines gas flow rate to the at least one hole. In addition, an array of pucks is at least generally congruent with the array of holes and disposed within respective ones of the holes to define annular gas passages for gas flow through the front plate into the chamber, each of the annular gas passages being non-aligned with the orifice.
摘要:
In a plasma reactor including a reactor chamber, a workpiece support for holding a workpiece inside the chamber during processing and an inductive antenna, a window electrode proximal a wall of the chamber, the antenna and wall being positioned adjacently, the window electrode being operable as (a) a capacitive electrode accepting RF power to capacitively coupled plasma source power into the chamber, and (b) a window electrode passing Rf power therethrough from said antenna into the chamber to inductively couple plasma source power into the chamber.
摘要:
Apparatus for controlling the thermal uniformity of a substrate. In some embodiments, the thermal uniformity of the substrate is controlled to be more uniform. In some embodiments, the thermal uniformity of the substrate is controlled to be non-uniform in a desired pattern. In some embodiments, an apparatus for controlling thermal uniformity of a substrate includes a substrate support having a support surface to support a substrate thereon. A plurality of flow paths having a substantially equivalent fluid conductance are disposed within the substrate support to flow a heat transfer fluid beneath the support surface.