摘要:
Embodiments of substrates, semiconductor devices and methods are shown that include elongated structures to improve conduction. Elongated structures and methods are also shown that provide electromagnetic isolation to reduce noise in adjacent components.
摘要:
A coreless pin-grid array (PGA) substrate includes PGA pins that are integral to the PGA substrate without the use of solder. A process of making the coreless PGA substrate integrates the PGA pins by forming a build-up layer upon the PGA pins such that vias make direct contact to pin heads of the PGA pins.
摘要:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include a die embedded in a coreless substrate, wherein a mold compound surrounds the die, and wherein the die comprises TSV connections on a first side and C4 pads on a second side of the die, a dielectric material on a first side and on a second side of the mold compound; and interconnect structures coupled to the C4 pads and to the TSV pads. Embodiments further include forming packaging structures wherein multiple dies are fully embedded within a BBUL package without PoP lands.
摘要:
A low-profile microelectronic package includes a die (110) (having a first surface (111) and a second surface (112)) and a package substrate (120). The substrate includes an electrically insulating layer (121) that forms a first side (126) of the substrate, an electrically conductive layer (122) connected to the die, and a protective layer (123) over the conductive layer that forms a second side (127) of the substrate. The first surface of the die is located at the first side of the substrate. The insulating layer has a plurality of pads (130) formed therein. The package further includes an array of interconnect structures (140) located at the first side of the substrate. Each interconnect structure in the array of interconnect structures has a first end (141) and a second end (142), and the first end is connected to one of the pads.
摘要:
Application of underfill material may be controlled to minimize the formation of voids between a plurality of integrated circuit (“IC”) dice and a substrate in an IC package. One or more elements are located in a gap between two dice to control the flow of underfill material and minimize the formation of voids within the underfill material. In an embodiment, an element may be an active electrical component, a passive electrical component, or a non-functional electrical component. Methods of fabrication, as well as application of the package to an electronic assembly and to an electronic system, are also described.
摘要:
An external direct connection usable for an embedded interconnect bridge package is described. In one example, a package has a substrate, a first semiconductor die having a first bridge interconnect region, and a second semiconductor die having a second bridge interconnect region. The package has a bridge embedded in the substrate, the bridge having a first contact area to connect to the first bridge interconnect region and a second contact area to connect to the second bridge interconnect region, and an external connection rail extending between the interconnect bridge and the first and second semiconductor dies to supply external connection to the first and second bridge interconnect regions.
摘要:
An external direct connection usable for an embedded interconnect bridge package is described. In one example, a package has a substrate, a first semiconductor die having a first bridge interconnect region, and a second semiconductor die having a second bridge interconnect region. The package has a bridge embedded in the substrate, the bridge having a first contact area to connect to the first bridge interconnect region and a second contact area to connect to the second bridge interconnect region, and an external connection rail extending between the interconnect bridge and the first and second semiconductor dies to supply external connection to the first and second bridge interconnect regions.
摘要:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, forming dielectric material surrounding the die, forming buildup layers in the dielectric material to form a coreless bumpless buildup package structure, and patterning the carrier material to form microchannel structures on the package structure.
摘要:
A structure includes a hybrid substrate for supporting a semiconductive device that includes a bumpless build-up layer in which the semiconductive device is embedded and a laminated-core structure. The bumpless build-up layer and the laminated-core structure are rendered an integral apparatus by a reinforcement plating that connects to a plated through hole in the laminated-core structure and to a subsequent bond pad of the bumpless build-up layer structure.
摘要:
A microelectronic package includes a substrate (110), a die (120) embedded within the substrate, the die having a front side (121) and a back side (122) and a through-silicon-via (123) therein, build-up layers (130) built up over the front side of the die, and a power plane (140) in physical contact with the back side of the die. In another embodiment, the microelectronic package comprises a substrate (210), a first die (220) and a second die (260) embedded in the substrate and having a front side (221, 261) and a back side (222, 262) and a through-silicon-via (223, 263) therein, build-up layers (230) over the front sides of the first and second dies, and an electrically conductive structure (240) in physical contact with the back sides of the first and second dies.