摘要:
Embodiments of invention are directed to the formation of microprobes (i.e. compliant electrical or electronic contact elements) on a temporary substrate, dicing individual probe arrays, and then transferring the arrays to space transformers or other permanent substrates. Some embodiments of the invention transfer probes to permanent substrates prior to separating the probes from a temporary substrate on which the probes were formed while other embodiments do the opposite. Some embodiments, remove sacrificial material prior to transfer while other embodiments remove sacrificial material after transfer. Some embodiments are directed to the bonding of first and second electric components together using one or more solder bumps with enhanced aspect ratios (i.e. height to width ratios) obtained as a result of surrounding the bumps at least in part with rings of a retention material. The retention material may act be a solder mask material.
摘要:
Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate. Probe tip patterning may occur in a variety of different ways, including, for example, via molding in patterned holes that have been isotropically or anisotropically etched silicon, via molding in voids formed in exposed photoresist, via molding in voids in a sacrificial material that have formed as a result of the sacrificial material mushrooming over carefully sized and located regions of dielectric material, via isotropic etching of the tip material around carefully sized and placed etching shields, via hot pressing, and the like.
摘要:
Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate. Probe tip patterning may occur in a variety of different ways, including, for example, via molding in patterned holes that have been isotropically or anisotropically etched silicon, via molding in voids formed in exposed photoresist, via molding in voids in a sacrificial material that have formed as a result of the sacrificial material mushrooming over carefully sized and located regions of dielectric material, via isotropic etching of the tip material around carefully sized and placed etching shields, via hot pressing, and the like.
摘要:
Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate. Probe tip patterning may occur in a variety of different ways, including, for example, via molding in patterned holes that have been isotropically or anisotropically etched silicon, via molding in voids formed in over exposed photoresist, via molding in voids in a sacrificial material that have formed as a result of the sacrificial material mushrooming over carefully sized and located regions of dielectric material, via isotropic etching of a the tip material around carefully sized placed etching shields, via hot pressing, and the like.
摘要:
Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate. Probe tip patterning may occur in a variety of different ways, including, for example, via molding in patterned holes that have been isotropically or anisotropically etched silicon, via molding in voids formed in over exposed photoresist, via molding in voids in a sacrificial material that have formed as a result of the sacrificial material mushrooming over carefully sized and located regions of dielectric material, via isotropic etching of a the tip material around carefully sized placed etching shields, via hot pressing, and the like.
摘要:
Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate. Probe tip patterning may occur in a variety of different ways, including, for example, via molding in patterned holes that have been isotropically or anisotropically etched silicon, via molding in voids formed in over exposed photoresist, via molding in voids in a sacrificial material that have formed as a result of the sacrificial material mushrooming over carefully sized and located regions of dielectric material, via isotropic etching of a the tip material around carefully sized placed etching shields, via hot pressing, and the like.
摘要:
Multi-layer microscale or mesoscale structures are fabricated with adhered layers (e.g. layers that are bonded together upon deposition of successive layers to previous layers) and are then subjected to a heat treatment operation that enhances the interlayer adhesion significantly. The heat treatment operation is believed to result in diffusion of material across the layer boundaries and associated enhancement in adhesion (i.e. diffusion bonding). Interlayer adhesion and maybe intra-layer cohesion may be enhanced by heat treating in the presence of a reducing atmosphere that may help remove weaker oxides from surfaces or even from internal portions of layers.
摘要:
Multi-layer microscale or mesoscale structures are fabricated with adhered layers (e.g. layers that are bonded together upon deposition of successive layers to previous layers) and are then subjected to a heat treatment operation that enhances the interlayer adhesion significantly. The heat treatment operation is believed to result in diffusion of material across the layer boundaries and associated enhancement in adhesion (i.e. diffusion bonding). Interlayer adhesion and maybe intra-layer cohesion may be enhanced by heat treating in the presence of a reducing atmosphere that may help remove weaker oxides from surfaces or even from internal portions of layers.
摘要:
Embodiments of the invention provide electrochemical fabrication processes that may be used for the fabrication of space transformers or the co-fabrication of microprobe arrays along with one or more space transformers.
摘要:
Embodiments of the invention provide fabrication processes for the co-fabrication of microprobe arrays along with one or more space transformers wherein the fabrication processes include the forming and adhering of a plurality of layers to previously formed layers and wherein at least a portion of the plurality of layers are formed from at least one structural material and at least one sacrificial material that is at least in part released from the plurality of layers after formation and wherein the space transformer includes a plurality of interconnect elements that connect one side to the array of probes that has a first spacing to another side that has a second spacing where the second spacing is greater than the first spacing. In some embodiments, the fabrication process includes a plurality of electrodeposition operations.