Abstract:
A semiconductor light emitting device according to an embodiment includes: a substrate; an n-type semiconductor layer formed on the substrate; an active layer formed on a first region of the n-type semiconductor layer, and emitting light; a p-type semiconductor layer formed on the active layer; a p-electrode formed on the p-type semiconductor layer, and including a first conductive oxide layer having an oxygen content lower than 40 atomic %; and an n-electrode formed on a second region of the n-type semiconductor layer.
Abstract:
According to one embodiment, a semiconductor light emitting device includes a stacked structural body, a first electrode, a second electrode, a third electrode, and a fourth electrode. The stacked structural body includes a first semiconductor layer, a second semiconductor layer, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The first electrode is electrically connected to the first semiconductor layer. The second electrode forms an ohmic contact with the second semiconductor layer. The second electrode is translucent to light emitted from the light emitting layer. The third electrode penetrates through the second electrode and is electrically connected to the second electrode to form Shottky contact with the second semiconductor layer. The third electrode is disposed between the fourth electrode and the second semiconductor layer. A shape of the fourth electrode as viewed along a stacking direction of the first semiconductor layer, the light emitting layer, and the second semiconductor layer is same as a shape of the third electrode as viewed along the stacking direction.
Abstract:
According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer and a light emitting layer. The emitting layer is provided between the n-type layer and the p-type layer, and includes a plurality of barrier layers and a plurality of well layers, being alternately stacked. The p-side barrier layer being closest to the p-type layer among the plurality of barrier layer includes a first layer and a second layer, containing group III elements. An In composition ratio in the group III elements of the second layer is higher than an In composition ratio in the group III elements of the first layer. An average In composition ratio of the p-side layer is higher than an average In composition ratio of an n-side barrier layer that is closest to the n-type layer among the plurality of barrier layers.
Abstract:
A semiconductor device has an active layer, a first semiconductor layer of first conductive type, an overflow prevention layer disposed between the active layer and the first semiconductor layer, which is doped with impurities of first conductive type and which prevents overflow of electrons or holes, a second semiconductor layer of first conductive type disposed at least one of between the active layer and the overflow prevention layer and between the overflow prevention layer and the first semiconductor layer, and an impurity diffusion prevention layer disposed between the first semiconductor layer and the active layer, which has a band gap smaller than those of the overflow prevention layer, the first semiconductor layer and the second semiconductor layer and which prevents diffusion of impurities of first conductive type.
Abstract:
According to one embodiment, a crystal growth method is disclosed for growing a crystal of a nitride semiconductor on a major surface of a substrate. The major surface is provided with asperities. The method can include depositing a buffer layer on the major surface at a rate of not more than 0.1 micrometers per hour. The buffer layer includes GaxAl1-xN (0.1≦x
Abstract translation:根据一个实施例,公开了用于在衬底的主表面上生长氮化物半导体的晶体的晶体生长方法。 主表面配有凹凸。 该方法可以包括以不大于0.1微米/小时的速率在主表面上沉积缓冲层。 缓冲层包括GaxAl1-xN(0.1&nlE; x <0.5),并且具有不小于20纳米且不大于50纳米的厚度。 此外,该方法可以包括在沉积缓冲层时在高于衬底的温度的温度下在缓冲层上生长包括氮化物半导体的晶体。
Abstract:
According to one embodiment, a light emitting device includes a semiconductor light emitting element, a mounting member, a first wavelength conversion layer, and a first transparent layer. The semiconductor light emitting element emits a first light. The semiconductor light emitting element is placed on the mounting member. The first wavelength conversion layer is provided between the semiconductor light emitting element and the mounting member in contact with the mounting member. The first wavelength conversion layer absorbs the first light and emits a second light having a wavelength longer than a wavelength of the first light. The first transparent layer is provided between the semiconductor light emitting element and the first wavelength conversion layer in contact with the semiconductor light emitting element and the first wavelength conversion layer. The first transparent layer is transparent to the first light and the second light.
Abstract:
According to one embodiment, the luminescent material emits light having an luminescence peak within a wavelength range of 550 to 590 nm when excited with light having an emission peak in a wavelength range of 250 to 520 nm. The luminescent material has a composition represented by the following formula 1. (Sr1-xEux)aSibAlOcNd formula 1 wherein x, a, b, c and d satisfy following condition: 0
Abstract:
According to one embodiment, a semiconductor light emitting device includes a light emitting layer, a light transmitting layer and a first semiconductor layer. The light transmitting layer is transmittable with respect to light emitted from the light emitting layer. The first semiconductor layer contacts the light transmitting layer between the light emitting layer and the light transmitting layer. The light transmitting layer has a thermal expansion coefficient larger than a thermal expansion coefficient of the light transmitting layer, has a lattice constant smaller than a lattice constant of the active layer, and has a tensile stress in an in-plane direction.
Abstract:
A light emitting device according to one embodiment includes a light emitting element that emits light having a wavelength of 250 nm to 500 nm and a fluorescent layer that is disposed on the light emitting element. The fluorescent layer includes a phosphor having a composition expressed by the following equation (1) and an average particle diameter of 12 μm or more. (M1−x1Eux1)3−ySi13−zAl3+zO2+uN21−w (1) (In the equation (1), M is an element that is selected from IA group elements, IIA group elements, IIIA group elements, IIIB group elements except Al, rare-earth elements, and IVB group elements. x1, y, z, u, and w satisfy the following relationship. 0
Abstract:
A light-emitting device is provided, which includes a package having a first portion and a second portion surrounding it, a semiconductor light-emitting element mounted on the first portion and emitting a light having an emission peak in a near-ultraviolet region, a transparent resin layer covering the semiconductor light-emitting element and contacted with the package, and a laminated body formed on the transparent resin layer with end faces of the laminated body being contacted with the second portion. The transparent resin layer has an arch-like outer profile perpendicular cross section. The laminated body has an arch-like outer profile in perpendicular cross section and comprises a red fluorescent layer, a yellow fluorescent layer, a green fluorescent layer and a blue fluorescent layer laminated in the mentioned order. The yellow fluorescent layer has a top portion which is made larger in thickness than that of the end face portions thereof.