摘要:
Methods for depositing film stacks by plasma enhanced chemical vapor deposition are described. In one example, a method for depositing a film stack on a substrate, wherein the film stack includes films of different compositions and the deposition is performed in a process station in-situ, is provided. The method includes, in a first plasma-activated film deposition phase, depositing a first layer of film having a first film composition on the substrate; in a second plasma-activated deposition phase, depositing a second layer of film having a second film composition on the first layer of film; and sustaining the plasma while transitioning a composition of the plasma from the first plasma-activated film deposition phase to the second plasma-activated film deposition phase.
摘要:
Methods and hardware for depositing film stacks in a process tool in-situ (i.e., without a vacuum break or air exposure) are described. In one example, a method for depositing, on a substrate, a film stack including films of different compositions in-situ in a process station using a plasma is described, the method including, in a first plasma-activated film deposition phase, depositing a first layer of film having a first film composition on the substrate; in a second plasma-activated deposition phase, depositing a second layer of film having a second film composition on the first layer of film; and sustaining the plasma while transitioning a composition of the plasma from the first plasma-activated film deposition phase to the second plasma-activated film deposition phase.
摘要:
Disclosed herein are methods of forming a film stack which may include the plasma accelerated deposition of a silicon nitride film formed from the reaction of nitrogen containing precursor with silicon containing precursor, the plasma accelerated substantial elimination of silicon containing precursor from the processing chamber, the plasma accelerated deposition of a silicon oxide film atop the silicon nitride film formed from the reaction of silicon containing precursor with oxidant, and the plasma accelerated substantial elimination of oxidant from the processing chamber. Also disclosed herein are process station apparatuses for forming a film stack of silicon nitride and silicon oxide films which may include a processing chamber, one or more gas delivery lines, one or more RF generators, and a system controller having machine-readable media with instructions for operating the one or more gas delivery lines, and the one or more RF generators.
摘要:
Methods and hardware for depositing ultra-smooth silicon-containing films and film stacks are described. In one example, an embodiment of a method for forming a silicon-containing film on a substrate in a plasma-enhanced chemical vapor deposition apparatus is disclosed, the method including supplying a silicon-containing reactant to the plasma-enhanced chemical vapor deposition apparatus; supplying a co-reactant to the plasma-enhanced chemical vapor deposition apparatus; supplying a capacitively-coupled plasma to a process station of the plasma-enhanced chemical vapor deposition apparatus, the plasma including silicon radicals generated from the silicon-containing reactant and co-reactant radicals generated from the co-reactant; and depositing the silicon-containing film on the substrate, the silicon-containing film having a refractive index of between 1.4 and 2.1, the silicon-containing film further having an absolute roughness of less than or equal to 4.5 Å as measured on a silicon substrate.
摘要:
Methods and hardware for depositing ultra-smooth silicon-containing films and film stacks are described. In one example, an embodiment of a method for forming a silicon-containing film on a substrate in a plasma-enhanced chemical vapor deposition apparatus is disclosed, the method including supplying a silicon-containing reactant to the plasma-enhanced chemical vapor deposition apparatus; supplying a co-reactant to the plasma-enhanced chemical vapor deposition apparatus; supplying a capacitively-coupled plasma to a process station of the plasma-enhanced chemical vapor deposition apparatus, the plasma including silicon radicals generated from the silicon-containing reactant and co-reactant radicals generated from the co-reactant; and depositing the silicon-containing film on the substrate, the silicon-containing film having a refractive index of between 1.4 and 2.1, the silicon-containing film further having an absolute roughness of less than or equal to 4.5 Å as measured on a silicon substrate.
摘要:
The embodiments herein relate to plasma-enhanced chemical vapor deposition methods and apparatus for depositing silicon nitride on a substrate. The disclosed methods provide silicon nitride films having wet etch rates (e.g., in dilute hydrofluoric acid or hot phosphoric acid) suitable for certain applications such as vertical memory devices. Further, the methods provide silicon nitride films having defined levels of internal stress suitable for the applications in question. These silicon nitride film characteristics can be set or tuned by controlling, for example, the composition and flow rates of the precursors, as well as the RF power supplied to the plasma and the pressure in the reactor. In certain embodiments, a boron-containing precursor is added.
摘要:
The methods and apparatus disclosed herein concern a process that may be referred to as a “soft anneal.” A soft anneal provides various benefits. Fundamentally, it reduces the internal stress in one or more silicon layers of a work piece. Typically, though not necessarily, the internal stress is a compressive stress. A particularly beneficial application of a soft anneal is in reduction of internal stress in a stack containing two or more layers of silicon. Often, the internal stress of a layer or group of layers in a stack is manifest as wafer bow. The soft anneal process can be used to reduce compressive bow in stacks containing silicon. The soft anneal process may be performed without causing the silicon in the stack to become activated.
摘要:
Methods of preparing a carbon doped oxide (CDO) layer of low dielectric constant and low residual stress involving, for instance, providing a substrate to a deposition chamber and exposing it to an organosilicon precursor containing unsaturated C—C bonds or to multiple organic precursors including at least one organosilicon and at least one unsaturated C—C bond are provided. The methods may also involve igniting and maintaining a plasma in a deposition chamber using radio frequency power having high and low frequency components with a high percentage of the low frequency component, and depositing the carbon doped dielectric layer under conditions in which the resulting dielectric layer has a residual stress of not greater than, e.g., about 50 MPa, and a dielectric constant not greater than about 3.
摘要:
Methods for improving the mechanical properties of a CDO film are provided. The methods involve, for instance, providing either a dense CDO film or a porous CDO film in which the porogen has been removed followed by curing the CDO film at an elevated temperature using either a UV light treatment, an e-beam treatment, or a plasma treatment such that the curing improves the mechanical toughness of the CDO dielectric film.