Abstract:
An embodiment includes a semiconductor package comprising: a substrate; a first semiconductor chip mounted on the substrate; a second semiconductor chip mounted on a top surface of the first semiconductor chip; a connecting bump disposed between the first and second semiconductor chips to electrically connect the second semiconductor chip to the first semiconductor chip; and a first heat dissipation part disposed on the top surface of the first semiconductor chip between the first and second semiconductor chips and spaced apart from a bottom surface of the second semiconductor chip.
Abstract:
A semiconductor package includes upper and lower semiconductor chip packages, and a redistribution wiring layer pattern interposed between the packages. The lower package includes a molding layer in which at least one chip is embedded, and has a top surface and an inclined sidewall surface along which the redistribution wiring layer pattern is formed. The upper and lower packages are electrically connected to through the redistribution wiring layer pattern. A first package may be formed by a wafer level packaging technique and may include a redistribution wiring layer as a substrate, a semiconductor chip disposed on the redistribution wiring layer, and a molding layer on which the lower package, redistribution wiring layer pattern and upper package are disposed.
Abstract:
A semiconductor package is provided. The semiconductor package include a lower semiconductor package including a lower package substrate and a lower semiconductor chip mounted thereon, and an upper semiconductor package provided on the lower semiconductor package to include an upper package substrate and an upper semiconductor chip mounted thereon. The upper package substrate include an upper heat-dissipation pattern, the lower semiconductor chip include a first via connected to the upper heat-dissipation pattern through the lower semiconductor chip, and the first via may provide a pathway for dissipating heat generated in the lower semiconductor chip.
Abstract:
A semiconductor package may include a first semiconductor chip including a first surface facing a package substrate, a second surface opposite to the first surface, and at least one through-electrode penetrating the first semiconductor chip, a molding layer molding the first semiconductor chip and exposing the second surface of the first semiconductor chip, a second semiconductor chip stacked on the second surface of the first semiconductor chip, and a non-conductive film provided between the first and second semiconductor chips. The second semiconductor chip includes an overhang portion extending past an edge of the first semiconductor chip. For example, a size of the second semiconductor chip may be greater than that of the first semiconductor chip, so the second semiconductor chip has an overhang. The second semiconductor chip includes at least one interconnecting terminal electrically connected to the at least one through-electrode.
Abstract:
Through-Silicon-Via (TSV) structures can include a conductive via through a substrate extending from an upper surface of the substrate to a backside surface of the substrate opposite the upper surface, a conductive protective layer including Ni and/or Co can be at a bottom of the conductive via, and a separate polymer insulating layer can be on the backside surface of the substrate in contact with the conductive protective layer.
Abstract:
A semiconductor package and a method of manufacturing the semiconductor package. The semiconductor package include a substrate including a plurality of pads and a plurality of bumps evenly disposed on an entire region of the substrate regardless of an arrangement of the plurality of pads. According to the present invention, a simplification of a process can be accomplished, a cost of a process can be reduced, reliability can be improved and an under-filling can become easy.
Abstract:
Through-Silicon-Via (TSV) structures can be provided by forming a conductive via through a substrate extending from an upper surface of the substrate to a backside surface of the substrate, that is opposite the upper surface, and having a conductive protective layer comprising Ni and/or Co formed at a bottom of the conductive via. A polymer insulating layer can be formed on the backside surface that is separate from the substrate and in contact with the conductive protective layer.
Abstract:
Through-Silicon-Via (TSV) structures can include a conductive via through a substrate extending from an upper surface of the substrate to a backside surface of the substrate opposite the upper surface, a conductive protective layer including Ni and/or Co can be at a bottom of the conductive via, and a separate polymer insulating layer can be on the backside surface of the substrate in contact with the conductive protective layer.