Abstract:
According to one embodiment, an optical semiconductor device includes a light emitting layer, a transparent layer, a first metal post, a second metal post and a sealing layer. The light emitting layer includes a first and a second major surface, a first and a second electrode. The second major surface is a surface opposite to the first major surface, and the first electrode and second electrodes are formed on the second major surface. The transparent layer is provided on the first major surface. The first metal post is provided on the first electrode. The second metal post is provided on the second electrode. The sealing layer is provided on the second major surface. The sealing layer covers a side surface of the light emitting layer and seals the first and second metal posts while leaving end portions of the first and second metal posts exposed.
Abstract:
An optical semiconductor device includes a light emitting element having a first surface and a second surface, the first surface having a first electrode provided thereon, the second surface being located on the opposite side from the first surface and having a second electrode provided thereon; a first conductive member connected to the first surface; a second conductive member connected to the second surface; a first external electrode connected to the first conductive member; a second external electrode connected to the second conductive member; and an enclosure sealing the light emitting element, the first conductive member, and the second conductive member between the first external electrode and the second external electrode, and being configured to transmit light emitted from the light emitting element.
Abstract:
According to one embodiment, a semiconductor light emitting device includes a light emitting unit, first and second conductive members, an insulating layer, a sealing member, and an optical layer. The light emitting unit includes a semiconductor stacked body and first and second electrodes. The semiconductor stacked body includes first and second semiconductor layers and a light emitting layer, and has a major surface on a second semiconductor layer side. The first and second electrodes are connected to the first and second semiconductor layers on the major surface side, respectively. The first conductive member is connected to the first electrode and includes a first columnar portion covering a portion of the second semiconductor. The insulating layer is provided between the first columnar portion and the portion of the second semiconductor. The sealing member covers side surfaces of the conductive members. The optical layer is provided on the other major surface.
Abstract:
According to one embodiment, a light-emitting unit which emits light, a wavelength conversion unit which includes a phosphor and which is provided on a main surface of the light-emitting unit, and a transparent resin which is provided on top of the wavelength conversion unit, are prepared. The transparent resin has a greater modulus of elasticity and/or a higher Shore hardness than the wavelength conversion unit.
Abstract:
A semiconductor light-emitting device includes a laminated body that is configured to emit light from a main surface thereof, first and second electrodes, each disposed on a surface of the laminated body that is opposite the main surface, a first terminal that is electrically coupled to the first electrode, has a concave edge but not a convex edge, and has at most three exposed sides, and a second terminal that is electrically coupled to the second electrode, has a concave edge but not a convex edge, and has at most three exposed sides.
Abstract:
According to an embodiment, a semiconductor light emitting device includes a stacked body, first and second electrodes, first and second interconnections, first and second pillars and a first insulating layer. The stacked body includes first and second semiconductor layers and a light emitting layer. The first and second electrodes are connected to the first and second semiconductor layers respectively. The first and second interconnections are connected to the first and second electrode respectively. The first and second pillars are connected to the first and second interconnections respectively. The first insulating layer is provided on the interconnections and the pillars. The first and second pillars have first and second monitor pads exposed in a surface of the first insulating layer. The first and second interconnections have first and second bonding pads exposed in a side face connected with the surface of the first insulating layer.
Abstract:
According to one embodiment, an optical semiconductor device includes a light emitting layer, a transparent layer, a first metal post, a second metal post and a sealing layer. The light emitting layer includes a first and a second major surface, a first and a second electrode. The second major surface is a surface opposite to the first major surface, and the first electrode and second electrodes are formed on the second major surface. The transparent layer is provided on the first major surface. The first metal post is provided on the first electrode. The second metal post is provided on the second electrode. The sealing layer is provided on the second major surface. The sealing layer covers a side surface of the light emitting layer and seals the first and second metal posts while leaving end portions of the first and second metal posts exposed.
Abstract:
According to one embodiment, a light source apparatus includes a semiconductor light emitting device, a mounting substrate, first and second connection members. The semiconductor light emitting device includes a light emitting unit, first and second conductive members, a sealing member, and an optical layer. The mounting substrate includes a base body, first and second substrate electrodes. The connection member electrically connects the conductive member to the substrate electrode. The conductive member is electrically connected to the light emitting unit electrode and includes first and second columnar portions provided on the second major surface. The sealing member covers side surfaces of the first and the second conductive members. The optical layer is provided on the first major surface of the semiconductor stacked body and includes a wavelength conversion unit. A surface area of the second substrate electrode is not less than 100 times a cross-sectional area of the second columnar portion.
Abstract:
An object of the present invention is to provide a plating method on a glass base plate. The method allows forming a plating film on a base plate composed of a glass material with excellent adhesivity and homogeneity by means of an electroless plating method even to a thickness of 1 μm or more. Before forming a plating film by a step of electroless plating S6, a surface treatment process is conducted on a surface of the base plate composed of a glass material. The surface treatment process comprises at least a step of glass activation treatment S2 to increase quantity of silanol groups on the surface of the base plate at least by a factor of two using an aqueous solution of diluted acid, a step of silane coupling agent treatment S3, a step of palladium catalyst treatment S4, and a step of palladium bonding treatment S5.
Abstract:
An object of the present invention is to provide a plating method on a glass base plate. The method allows forming a plating film on a base plate composed of a glass material with excellent adhesivity and homogeneity by means of an electroless plating method even to a thickness of 1 μm or more. Before forming a plating film by a step of electroless plating S6, a surface treatment process is conducted on a surface of the base plate composed of a glass material. The surface treatment process comprises at least a step of glass activation treatment S2 to increase quantity of silanol groups on the surface of the base plate at least by a factor of two using an aqueous solution of diluted acid, a step of silane coupling agent treatment S3, a step of palladium catalyst treatment S4, and a step of palladium bonding treatment S5.
Abstract translation:本发明的目的是提供一种在玻璃基板上的电镀方法。 该方法允许通过化学镀方法在具有优异的粘合性和均匀性的玻璃材料的基板上形成镀膜,甚至厚度为1um或更大。 在通过无电解电镀步骤S 6形成电镀膜之前,在由玻璃材料构成的基板的表面上进行表面处理工艺。 表面处理方法至少包括玻璃活化处理S 2的步骤,以使用稀酸水溶液至少增加2倍的基板表面的硅烷醇基团量,硅烷偶联剂处理步骤 S 3,钯催化剂处理工序S4,钯键合处理工序S 5。