摘要:
A mounting substrate includes a substrate, a bonding pad and an induction heating pad. The bonding pad is formed on the substrate, and adhered to a solder ball to mount a semiconductor chip on the substrate. The induction heating pad is disposed adjacent to the bonding pad, the induction heating pad being induction heated by an applied alternating magnetic field to reflow the solder ball. The induction heating pad having a diameter greater than a skin depth in response to the frequency of the applied alternating magnetic field is selectively induction heated in response to a low frequency band of the alternating magnetic field. Accordingly, during a reflow process for a solder ball, the semiconductor chip may be mounted on the mounting substrate to complete a semiconductor package without damaging the mounting substrate, to thereby improve the reliability of the completed semiconductor package.
摘要:
A mounting substrate includes a substrate, a bonding pad and an induction heating pad. The bonding pad is formed on the substrate, and adhered to a solder ball to mount a semiconductor chip on the substrate. The induction heating pad is disposed adjacent to the bonding pad, the induction heating pad being induction heated by an applied alternating magnetic field to reflow the solder ball. The induction heating pad having a diameter greater than a skin depth in response to the frequency of the applied alternating magnetic field is selectively induction heated in response to a low frequency band of the alternating magnetic field. Accordingly, during a reflow process for a solder ball, the semiconductor chip may be mounted on the mounting substrate to complete a semiconductor package without damaging the mounting substrate, to thereby improve the reliability of the completed semiconductor package.
摘要:
A void that is created in a conductive electrode in a through hole that extends through an integrated circuit substrate can be used as a joining interface. For example, an integrated circuit structure includes an integrated circuit substrate having a conductive pad on a first face thereof, and a through hole that extends through the integrated circuit substrate from a second face of the integrated circuit substrate that is opposite to the first face and through the pad. A conductive electrode is provided in the through hole that extends from the second face to the first face through and onto the pad. The conductive electrode includes a void therein adjacent the second face. The void includes a void opening adjacent the second face that defines inner walls of the conductive electrode. A conductive material is provided in the void that directly contacts the inner walls of the conductive electrode. Related fabrication methods are also disclosed.
摘要:
A semiconductor package includes a semiconductor chip stack disposed between first and second leads near first and second sides of the package and including a plurality of semiconductor chips, and a redistribution structure disposed on the semiconductor chip stack. At least one semiconductor chip of the semiconductor chip stack includes a plurality of first chip pads disposed near or closer to a third side of the package. The redistribution structure includes a first redistribution pad disposed near or closer to the first side and electrically connected to the first lead, a second redistribution pad disposed near or closer to the second side and electrically connected to the second lead, and a third redistribution pad disposed near or closer to the third side and electrically connected to a first one of the first chip pads and the first redistribution pad.
摘要:
The invention provides a semiconductor device. The semiconductor device includes a semiconductor chip having an active surface on which pads are disposed, a passivation layer pattern disposed to cover the active surface of the semiconductor chip and to expose the pads, a first insulation layer pattern disposed on the passivation layer pattern, a second insulation layer pattern disposed on only a portion of the first insulation layer pattern, and redistribution line patterns electrically connected to the pads and disposed so as to extend across the second insulation layer pattern and the first insulation layer pattern. A method of fabricating the same is also provided.
摘要:
Provided are a semiconductor memory device and a method of driving the device which can improve a noise characteristic of a voltage signal supplied to a memory cell of the device. The semiconductor memory device includes a first semiconductor chip and one or more second semiconductor chips stacked on the first chip. The first chip includes an input/output circuit for sending/receiving a voltage signal, a data signal, and a control signal to/from an outside system. The one or more second semiconductor chips each include a memory cell region for storing data. The second semiconductor chips receive at least one signal through one or more signal paths that are formed outside the input/output circuit of the first chip.
摘要:
A stack package may include a substrate having first and second faces opposite each other and an opening formed therein. The first semiconductor chip may be mounted on the first face of the substrate and include a through electrode in the middle region of the first semiconductor chip that is exposed through the opening. The second semiconductor chip may be stacked on the first semiconductor chip and electrically connected to the first semiconductor chip by the through electrode of the first semiconductor chip. The circuit pattern may be formed on the second face of the substrate and include a bonding pad arranged adjacent to the opening and electrically connected to the through electrode of the first semiconductor chip through the opening, an outer connection pad spaced apart from the bonding pad and a connection wiring extending from the opening to the outer connection pad via the bonding pad.
摘要:
An embodiment may comprise a test probe to measure electrical properties of a semiconductor package having ball-shaped terminals. The probe may include a signal tip and a ground tip. The signal tip may have a spherical lower surface allowing good contact with a ball-shaped signal terminal. The ground tip may be extended from a lower end of a ground barrel that encloses the signal tip. The ground tip may move independent of the signal tip by means of a barrel stopper and a spring. Thus, the probe can be used regardless of the size of and the distance between the package terminals.
摘要:
The present invention relates to a three-dimensional semiconductor module having at least one unit semiconductor device connected to the outer-facing side surfaces of a multi-side ground block. The unit semiconductor device has a structure in which a semiconductor package (or semiconductor chip) is mounted on a unit wiring substrate. Ground pads to be connected to the outer-facing side surfaces of the ground block are formed on the first surface of the unit wiring substrate, the semiconductor chip is mounted on the second surface opposite to the first surface, and contact terminals electrically connected to the semiconductor chip are formed on the second surface.
摘要:
A wafer-level stack package includes semiconductor chips, first connection members, a second connection member, a substrate and an external connection terminal. The semiconductor chips have a power/ground pad and a signal pad. The first connection members are electrically connected to the power/ground pad and the signal pad of each of the semiconductor chips. The second connection member is electrically connected to at least one of the power/ground pads of each of the semiconductor chips, the power/ground pads being connected to the first connection members. The substrate supports the stacked semiconductor chips, the substrate including wirings that are electrically connected to the first connection members and the second connection member. The external connection terminal is provided on a surface of the substrate opposite to a surface where the semiconductor chips are stacked, wherein the external connection terminals are electrically connected to the wirings, respectively.