Electron microscope
    4.
    发明授权
    Electron microscope 失效
    电子显微镜

    公开(公告)号:US5552602A

    公开(公告)日:1996-09-03

    申请号:US398684

    申请日:1995-03-06

    摘要: 3-dimensional observation on the atomic arrangement and atomic species in a thin-film specimen as well as conventional electron microscope observations is carried out at high speed and accuracy by an electron microscope which measures electrons emitted at high angle from the specimen. For that purpose, the present invention provides a scanning transmission electron microscope having an electron detection device comprising a scintillator converting electrons detected thereby to photons, a photoconductive-film converting photons from the scintillator detected thereby to c.a. 1000 times as many electron-hole pairs as these photons (i.d. avalanche multiplication), an electron gun emitting an electron beam toward the photoconductive-film to detect the holes generated therein, and electron deflector electrodes deflecting the electron beam on the photoconductive-film. Avalanche multiplication in the photoconductive-film amplifies the signal of these photons at so high signal-to-noise ratio that the electron microscope in this invention can detect such weak electrons as emitted at high angle from the specimen at high sensitivity and resolution. Therefore this invention enables a scanning transmission electron microscope to obtain for example 3-dimensional image of point defects and impurity elements existing in joint interfaces and contacts in a ULSI device rapidly and accurately.

    摘要翻译: 通过电子显微镜以高速和准确的方式对薄膜样品中的原子排列和原子种类进行3维观察,以及常规的电子显微镜观察,测量从样品以高角度发射的电子。 为此目的,本发明提供了一种具有电子检测装置的扫描透射电子显微镜,该电子检测装置包括将由此检测的电子转化为光子的闪烁体,从其检测的闪烁体的光电导膜转换光子至c.a. 与这些光子(i.d.雪崩乘法)一样多的电子 - 空穴对的1000倍,向光电导膜发射电子束以检测其中产生的空穴的电子枪以及偏转电子束在光电导膜上的电子偏转器电极。 光电导膜中的雪崩乘法以如此高的信噪比放大了这些光子的信号,使得本发明的电子显微镜能够以高灵敏度和分辨率从样品中以高角度检测出这样的弱电子。 因此,本发明能够使扫描透射电子显微镜能够快速,准确地获得例如存在于ULSI装置的接合界面和触点中的点缺陷和杂质元素的3维图像。

    Scintillator device and image pickup apparatus using the same
    5.
    发明授权
    Scintillator device and image pickup apparatus using the same 失效
    闪光装置及使用其的图像拾取装置

    公开(公告)号:US5932880A

    公开(公告)日:1999-08-03

    申请号:US850480

    申请日:1997-05-05

    IPC分类号: H01J37/244 H01J29/20

    CPC分类号: H01J37/244 H01J2237/2443

    摘要: A scintillator device and an image pickup apparatus using the scintillator, in which the scintillator for converting an input particle or electron beam image into an optical image is applied with a voltage between electrodes formed at the input plane of the electron beam and the output plane of scintillation. This voltage generates an electric field in the scintillator so that scattering of a charged particle beam in the scintillator is prevented and the resolution and S/N ratio can be improved while retaining a large amount of scintillation. Accordingly, the shift amount of low energy charged particle beams from the incident axis, which greatly influences degradation of the resolution and S/N ratio, can be suppressed.

    摘要翻译: 使用闪烁体的闪烁体装置和图像拾取装置,其中将输入粒子或电子束图像转换成光学图像的闪烁体在电子束的输入平面和形成在电子束的输出平面的电极之间施加电压 闪烁。 该电压在闪烁器中产生电场,从而防止了闪烁体中的带电粒子束的散射,并且能够在保持大量的闪烁的同时提高分辨率和S / N比。 因此,可以抑制极大地影响分辨率和S / N比的劣化的来自入射轴的低能量带电粒子束的偏移量。

    Magnetic electron microscope
    7.
    发明授权
    Magnetic electron microscope 有权
    磁电子显微镜

    公开(公告)号:US07518111B1

    公开(公告)日:2009-04-14

    申请号:US11543787

    申请日:2006-10-06

    IPC分类号: H01J37/27 G01N23/04

    摘要: Below 50-nm-diameter extremely narrow electrically-conductive fiber is used instead of the electron beam biprism used in the conventional interference electron microscope method. A phenomenon is utilized where a focus-shifted shadow of this fiber is shifted from a straight line by a distance which is proportional to a differentiation of phase change amount of an electron beam due to a sample with respect to a direction perpendicular to the fiber. The phase change amount is quantified by calibrating this shift amount through its comparison with a shift amount caused by another sample in terms of which the corresponding phase change amount has been quantitatively evaluated in advance. The differentiation amount of the quantified phase change in the electron beam due to the sample is visualized, or eventually, is integrated thereby being transformed into absolute phase change amount to be visualized.

    摘要翻译: 使用低于50nm直径的非常窄的导电纤维来代替在常规干涉电子显微镜方法中使用的电子束双棱镜。 使用这种现象,其中该光纤的聚焦移动阴影从直线移位一定距离,该距离与由于样品相对于垂直于光纤的方向的样品的电子束的相变量的微分成正比。 通过与通过与预先对相应的相变量进行定量评价的另一个样品引起的移位量进行比较来校准该偏移量来量化相位变化量。 由于样品而导致的电子束的量化相变的微分量被可视化,或最终被积分,从而被转换为绝对相变量以被可视化。

    Electric charged particle beam microscopy and electric charged particle beam microscope
    10.
    发明授权
    Electric charged particle beam microscopy and electric charged particle beam microscope 失效
    电荷粒子束显微镜和带电粒子束显微镜

    公开(公告)号:US07633064B2

    公开(公告)日:2009-12-15

    申请号:US11773840

    申请日:2007-07-05

    IPC分类号: H01J37/153

    摘要: An electric charged particle beam microscope measures a geometric distortion at an arbitrary magnification with high precision, and corrects the geometric distortion. A geometric distortion at a first magnification is measured as an absolute distortion based on a standard specimen having a cyclic structure. A microscopic structure specimen is photographed at a geometric distortion measured first magnification and at a geometric distortion unmeasured second magnification. The image at the first magnification is equally transformed to the second magnification to generate a scaled image. The geometric distortion at the second magnification is measured as a relative distortion based on the scaled image. The absolute distortion at the second magnification is obtained on the basis of the absolute distortion at the first magnification and the relative distortion at the second magnification. Subsequently, the second magnification is replaced with the first magnification, and the relative distortion measurement is repeated.

    摘要翻译: 带电粒子束显微镜可以高精度地测量任意倍率的几何畸变,校正几何失真。 基于具有循环结构的标准样品,测量第一倍率下的几何失真作为绝对变形。 以几何失真测量的第一放大倍率和几何失真未测量的第二倍率拍摄微观结构样本。 将第一放大倍率下的图像等效地变换为第二放大率以生成缩放图像。 第二倍率下的几何畸变被测量为基于缩放图像的相对失真。 基于第一倍率下的绝对失真和第二倍率下的相对失真,获得第二放大倍率下的绝对失真。 随后,用第一倍率代替第二倍率,并重复相对失真测量。