摘要:
A method for joining a multiplicity of multi-alloy solder columns to an electronic substrate and the structure formed by such method are disclosed. In the method, a mold plate equipped with a multiplicity of cavities is first filled by an injection molded solder technique with a high temperature solder forming a multiplicity of solder columns. The mold plate is then sandwiched between an extraction plate and a transfer plate by utilizing a multiplicity of displacement means equipped in the extraction plate to displace the multiplicity of solder columns from the mold plate into a multiplicity of apertures equipped in the transfer plate. The multiplicity of cavities in the transfer plate each has a straight opening and a flared opening. The flared opening is then filled with a low temperature solder paste to encapsulate one end of the high temperature solder column. The low temperature solder paste is then reflown on top of a conductive pad on an electronic substrate at a temperature lower than the melting temperature of the high temperature solder to form a bond between the solder column and the conductive pad.
摘要:
Methods for fabricating microelectronic interconnection structures as well as the structures formed by the methods are disclosed which improve the manufacturing throughput for assembling flip chip semiconductor devices. The use of a bilayer of polymeric materials applied on the wafer prior to dicing eliminates the need for dispensing and curing underfill for each semiconductor at the package level, thereby improving manufacturing throughput and reducing cost.
摘要:
A plurality of through-substrate holes is formed in each of at least one substrate. Each through-substrate hole extends from a top surface of the at least one substrate to the bottom surface of the at least one substrate. The at least one substrate is held by a stationary chuck or a rotating chuck. Vacuum suction is provided to a set of through-substrate holes among the plurality of through-substrate holes through a vacuum manifold attached to the bottom surface of the at least one substrate. An injection mold solder head located above the top surface of the at least one substrate injects a solder material into the set of through-substrate holes to form a plurality of through-substrate solders that extend from the top surface to the bottom surface of the at least one substrate. The vacuum suction prevents formation of air bubbles or incomplete filling in the plurality of through-substrate holes.
摘要:
A plurality of through-substrate holes is formed in each of at least one substrate. Each through-substrate hole extends from a top surface of the at least one substrate to the bottom surface of the at least one substrate. The at least one substrate is held by a stationary chuck or a rotating chuck. Vacuum suction is provided to a set of through-substrate holes among the plurality of through-substrate holes through a vacuum manifold attached to the bottom surface of the at least one substrate. An injection mold solder head located above the top surface of the at least one substrate injects a solder material into the set of through-substrate holes to form a plurality of through-substrate solders that extend from the top surface to the bottom surface of the at least one substrate. The vacuum suction prevents formation of air bubbles or incomplete filling in the plurality of through-substrate holes.
摘要:
A method of implementing an injection molded soldering process for three-dimensional structures, particularly, such as directed to three-dimensional semiconductor chip stacking. Also provide is an arrangement for implementing the injection molded soldering (IMS) process. Pursuant to an embodiment of the invention, the joining of the semiconductor chip layers with a substrate is implemented, rather than by means of currently known wire bond stacking, through the intermediary of columns of solder material formed by the IMS process, thereby providing electrical advantages imparted by the flip chip interconnect structures. In this connection, various diversely dimensioned solder column interconnects allow for simple and dependable connections to a substrate by a plurality of superimposed layers or stacked arrays of semiconductor components, such as semiconductor chips. In accordance with a further aspect, it is possible to derive a unique design for an IMS mold structure, which contains cavities for forming the columnar fill of solder, and which also incorporates further cavities acting as cutouts for dies or the positioning of other electronic packages or modules.
摘要:
Composite interconnect structure forming methods using injection molded solder are disclosed. The methods provide a mold having at least one opening formed therein with each opening including a member of a material dissimilar to a solder to be used to fill the opening, and then fill the remainder of each opening with solder to form the composite interconnect structure. The resulting composite interconnect structure can be leveraged to achieve a much larger variety of composite structures than exhibited by the prior art. For example, the material may be chosen to be more electrically conductive than the solder portion, more electromigration-resistant than the solder portion and/or more fatigue-resistant than the solder portion. In one embodiment, the composite interconnect structure can include an optical structure, or plastic or ceramic material. The optical structure provides radiation propagation and/or amplification between waveguides in the substrate and device, and the plastic material provides fatigue-resistance.
摘要:
An optoelectronic (OE) package or system and method for fabrication is disclosed which includes a silicon layer with wiring. The silicon layer has an optical via for allowing light to pass therethrough. An optical coupling layer is bonded to the silicon layer, and the optical coupling layer includes a plurality of microlenses for focusing and or collimating the light through the optical via. A plurality of OE elements are coupled to the silicon layer and electrically communicating with the wiring. At least one of the OE elements positioned in optical alignment with the optical via for receiving the light. A carrier is interposed between electrical interconnect elements. The carrier is positioned between the wiring of the silicon layer and a circuit board and the carrier is electrically connecting first interconnect elements connected to the wiring of the silicon layer and second interconnect elements connected to the circuit board.
摘要:
A method to effectively deposit multi-component solders while remaining compatible with electroplating solder bumping process. A flip-chip solder bump is formed by using electroplated solder bump technology with the addition of wettable layer of metal or solder. The remainder of the required solder volume is deposited by Injection Molded Solder (IMS) technology. This method will accommodate certain metals, as well as trace amounts of alloying, that would be difficult or impossible to electroplate. The method also allows for electrical test between deposition of the wettable layer of solder and the bulk solder, providing the advantages of a more planar surface for probe contact, with very consistent height, less solder pick-up by the test probe and elimination of the post-probe solder reflow step.
摘要:
In a microelectronic chip package for which grounding and thermal dissipation is desired, a cover is provided having an opening which is aligned with a contact on the substrate connected to ground potential. The cover is connected to the electronic device and the ground contact. This invention provides for a method and electronic package to overcome the difficulties encountered when attempting to simultaneously attach a cover to two different surfaces with two different adhesives.
摘要:
A method of implementing an injection molded soldering process for three-dimensional structures, particularly, such as directed to three-dimensional semiconductor chip stacking. Also provide is an arrangement for implementing the injection molded soldering (IMS) process. Pursuant to an embodiment of the invention, the joining of the semiconductor chip layers with a substrate is implemented, rather than by means of currently known wire bond stacking, through the intermediary of columns of solder material formed by the IMS process, thereby providing electrical advantages imparted by the flip chip interconnect structures. In this connection, various diversely dimensioned solder column interconnects allow for simple and dependable connections to a substrate by a plurality of superimposed layers or stacked arrays of semiconductor components, such as semiconductor chips. In accordance with a further aspect, it is possible to derive a unique design for an IMS mold structure, which contains cavities for forming the columnar fill of solder, and which also incorporates further cavities acting as cutouts for dies or the positioning of other electronic packages or modules.