Abstract:
Exposed copper regions on a semiconductor substrate can be etched by a wet etching solution comprising (i) one or more complexing agents selected from the group consisting of bidentate, tridentate, and quadridentate complexing agents; and (ii) an oxidizer, at a pH of between about 5 and 12. In many embodiments, the etching is substantially isotropic and occurs without visible formation of insoluble species on the surface of copper. The etching is useful in a number of processes in semiconductor fabrication, including for partial or complete removal of copper overburden, for planarization of copper surfaces, and for forming recesses in copper-filled damascene features. Examples of suitable etching solutions include solutions comprising a diamine (e.g., ethylenediamine) and/or a triamine (e.g., diethylenetriamine) as bidentate and tridentate complexing agents respectively and hydrogen peroxide as an oxidizer. In some embodiments, the etching solutions further include pH adjustors, such as sulfuric acid, aminoacids, and carboxylic acids.
Abstract:
Exposed copper regions on a semiconductor substrate can be etched by a wet etching solution comprising (i) one or more complexing agents selected from the group consisting of bidentate, tridentate, and quadridentate complexing agents; and (ii) an oxidizer, at a pH of between about 5 and 12. In many embodiments, the etching is substantially isotropic and occurs without visible formation of insoluble species on the surface of copper. The etching is useful in a number of processes in semiconductor fabrication, including for partial or complete removal of copper overburden, for planarization of copper surfaces, and for forming recesses in copper-filled damascene features. Examples of suitable etching solutions include solutions comprising a diamine (e.g., ethylenediamine) and/or a triamine (e.g., diethylenetriamine) as bidentate and tridentate complexing agents respectively and hydrogen peroxide as an oxidizer. In some embodiments, the etching solutions further include pH adjustors, such as sulfuric acid, aminoacids, and carboxylic acids.
Abstract:
Methods of electroplating metal on a substrate while controlling azimuthal uniformity, include, in one aspect, providing the substrate to the electroplating apparatus configured for rotating the substrate during electroplating, and electroplating the metal on the substrate while rotating the substrate relative to a shield such that a selected portion of the substrate at a selected azimuthal position dwells in a shielded area for a different amount of time than a second portion of the substrate having the same average arc length and the same average radial position and residing at a different angular (azimuthal) position. For example, a semiconductor wafer substrate can be rotated during electroplating slower or faster, when the selected portion of the substrate passes through the shielded area.
Abstract:
Described are apparatus and methods for electroplating one or more metals onto a substrate. Embodiments include electroplating apparatus configured for, and methods including, efficient mass transfer during plating so that highly uniform plating layers are obtained. In specific embodiments, the mass transfer is achieved using a combination of impinging flow and shear flow at the wafer surface.
Abstract:
Described are apparatus and methods for electroplating one or more metals onto a substrate. Embodiments include electroplating apparatus configured for, and methods including, efficient mass transfer during plating so that highly uniform plating layers are obtained. In specific embodiments, the mass transfer is achieved using a combination of impinging flow and shear flow at the wafer surface.
Abstract:
Disclosed are pre-wetting apparatus designs and methods. These apparatus designs and methods are used to pre-wet a wafer prior to plating a metal on the surface of the wafer. Disclosed compositions of the pre-wetting fluid prevent corrosion of a seed layer on the wafer and also improve the filling rates of features on the wafer.
Abstract:
An apparatus for continuous simultaneous electroplating of two metals having substantially different standard electrodeposition potentials (e.g., for deposition of Sn—Ag alloys) comprises an anode chamber for containing an anolyte comprising ions of a first, less noble metal, (e.g., tin), but not of a second, more noble, metal (e.g., silver) and an active anode; a cathode chamber for containing catholyte including ions of a first metal (e.g., tin), ions of a second, more noble, metal (e.g., silver), and the substrate; a separation structure positioned between the anode chamber and the cathode chamber, where the separation structure substantially prevents transfer of more noble metal from catholyte to the anolyte; and fluidic features and an associated controller coupled to the apparatus and configured to perform continuous electroplating, while maintaining substantially constant concentrations of plating bath components for extended periods of use.
Abstract:
Disclosed are pre-wetting apparatus designs and methods. These apparatus designs and methods are used to pre-wet a wafer prior to plating a metal on the surface of the wafer. Disclosed compositions of the pre-wetting fluid prevent corrosion of a seed layer on the wafer and also improve the filling rates of features on the wafer.
Abstract:
Methods and apparatus for isotropically etching a metal from a work piece, while recovering and reconstituting the chemical etchant are described. Various embodiments include apparatus and methods for etching where the recovered and reconstituted etchant is reused in a continuous loop recirculation scheme. Steady state conditions can be achieved where these processes are repeated over and over with occasional bleed and feed to replenish reagents and/or adjust parameters such as pH, ionic strength, salinity and the like.
Abstract:
Methods and apparatus for isotropically etching a metal from a work piece, while recovering and reconstituting the chemical etchant are described. Various embodiments include apparatus and methods for etching where the recovered and reconstituted etchant is reused in a continuous loop recirculation scheme. Steady state conditions can be achieved where these processes are repeated over and over with occasional bleed and feed to replenish reagents and/or adjust parameters such as pH, ionic strength, salinity and the like.