Abstract:
An image sensor device includes a semiconductor substrate, a radiation sensing member, a device layer and a trench isolation. The semiconductor substrate has a front side surface and a back side surface opposite to the front side surface. The radiation sensing member is disposed in a photosensitive region of the semiconductor substrate and extends from the front side surface of the semiconductor substrate. The radiation sensing member includes a semiconductor material with an optical band gap energy smaller than 1.77 eV. The device layer is over the front side surface of the semiconductor substrate and the radiation sensing member. The trench isolation is disposed in an isolation region of the semiconductor substrate and extends from the back side surface of the semiconductor substrate.
Abstract:
An integrated circuit (IC) packaging substrate includes a main body, at least one first conductive line, at least one second conductive line, and at least one protrusion pad. The first conductive line is embedded in the main body. The second conductive line is embedded in the main body. The protrusion pad is disposed on the first conductive line. The protrusion pad protrudes from the main body and is configured to be in electrical contact with a solder portion of a semiconductor chip. A first spacing between the protrusion pad and the second conductive line is determined in accordance with a process deviation of the protrusion pad by the width of the protrusion pad and the width of the first conductive line. Moreover, a semiconductor package having the IC packaging substrate and a manufacturing method of the semiconductor package are also provided.
Abstract:
A bump-on-trace interconnection structure utilizing a lower volume solder joint for joining a conductive metal pillar and a metal line trace includes a conductive metal pillar having a bonding surface having a width WP and a metal line trace, provided on a package substrate, having a top surface with a width WT, where WP is greater than WT. The solder joint is bonded to the bonding surface by wetting across the width WP and bonded predominantly only to the top surface of the metal line trace by wetting predominantly only to the top surface across the width WT.
Abstract:
An image sensor device includes a semiconductor substrate, a radiation sensing member, a shallow trench isolation, and a color filter layer. The radiation sensing member is in the semiconductor substrate. An interface between the radiation sensing member and the semiconductor substrate includes a direct band gap material. The shallow trench isolation is in the semiconductor substrate and surrounds the radiation sensing member. The color filter layer covers the radiation sensing member.
Abstract:
A photodetector includes: a substrate; a first semiconductor region, the first semiconductor region extending into the substrate from a front side of the substrate; and a second semiconductor region, the second semiconductor region further extending into the substrate from a bottom boundary of the first semiconductor region, wherein when the photodetector operates under a Geiger mode, the second semiconductor region is fully depleted to absorb a radiation source received from a back side of the substrate.
Abstract:
The present disclosure is directed to anchor structures and methods for forming anchor structures such that planarization and wafer bonding can be uniform. Anchor structures can include anchor layers formed on a dielectric layer surface and anchor pads formed in the anchor layer and on the dielectric layer surface. The anchor layer material can be selected such that the planarization selectivity of the anchor layer, anchor pads, and the interconnection material can be substantially the same as one another. Anchor pads can provide uniform density of structures that have the same or similar material.
Abstract:
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a substrate, a light sensing feature, a negative oxide layer, a gate dielectric layer and a transfer gate. The light sensing feature is configured in the substrate to detect an incoming radiation. The negative oxide layer is over the light sensing feature. The gate dielectric layer is over the negative oxide layer. The transfer gate is over the gate dielectric layer.
Abstract:
A semiconductor device includes a substrate, a semiconductor structure, a metal pad, and a stress releasing material. The semiconductor structure is disposed on the substrate. The metal pad is disposed on the semiconductor structure. The metal pad includes a through hole therein. The stress releasing material is disposed in the through hole.
Abstract:
A method includes providing a semiconductor substrate having a front side surface and a back side surface opposite to the front side surface. A photosensitive region of the semiconductor substrate is etched to form a recess. A semiconductor material is deposited on the semiconductor substrate to form a radiation sensing member filling the recess. The semiconductor material has an optical band gap energy smaller than 1.77 eV. A device layer is formed over the front side surface of the semiconductor substrate and the radiation sensing member. A trench isolation is formed in an isolation region of the semiconductor substrate and extending from the back side surface of the semiconductor substrate.
Abstract:
A semiconductor structure is provided. A first semiconductor device includes a first conductive layer formed over a first substrate; a first etching stop layer formed over the first conductive layer, and the first etching stop layer is in direct contact with the first conductive layer. A first bonding layer is formed over the first etching stop layer, and a first bonding via is formed through the first bonding layer and the first etching stop layer. The semiconductor structure includes a second semiconductor device. The second semiconductor device includes a second bonding layer formed over the second etching stop layer and a second bonding via formed through the second bonding layer and a second etching stop layer. A bonding structure between the first substrate and the second substrate, and the bonding structure includes the first bonding via bonded to the second bonding via.