摘要:
A thermoplastic polyimide having good thermal stability, comprising a repeating unit represented by the chemical formula (1), a molecular terminal being composed of the chemical formula (2) and/or chemical formula (3), characterized in that: a melt viscosity ratio calculated by the numerical formula (1) and/or the numerical formula (3) is within a numerical range shown in the numerical formula (2) and/or the numerical formula (4) and 1,3-bis(4-aminophenoxy)benzene represented by the chemical formula (3) for production of the above polyimide, characterized in that the content of an azo compound is from 0.0 to 0.2%. The thermoplastic polyimide of the present invention has excellent characteristics {circle around (1)} to {circle around (4)} described below. {circle around (1)} It is superior in thermal stability on melting. That is, the degree of lowering of the fluidity on melting with a lapse of time is small and it is possible to apply to conventional melt molding. {circle around (2)} It has high heat resistance. {circle around (3)} It is superior in productivity. {circle around (4)} It is superior in dimensional accuracy.
摘要:
This invention provides crosslinkable-group-containing polyimides of various known thermoplastic polyimide backbone structures, which are provided with far better heat resistance, chemical resistance and mechanical properties than known polyimides of the structures without impairing excellent moldability or formability, superb sliding property, low water absorption property, outstanding electrical properties, high thermal oxidation stability and high radiation resistance, all of which are inherent to the structures.
摘要:
A semiconductor module comprises: a metal block; a semiconductor device installed via a solder layer in a semiconductor device installation area on a surface of the metal block; and a molded portion formed by molding a resin on the metal block and the semiconductor device; wherein the surface of the metal block includes a plating area and a roughened area, and the semiconductor device installation area is provided in the plating area.
摘要:
An electronic component having a semiconductor element bonded to a substrate with solder has a decreased bonding strength if there is not a suitable clearance between the semiconductor element and the substrate. Therefore, a solder preform having high melting point metal particles dispersed in solder has been used in the manufacture of electronic components. However, when an electronic component was manufactured using a conventional solder preform, there were cases in which the semiconductor element leaned or the bonding strength was not adequate.A solder preform according to the present invention has a variation in the size of high melting point metal particles which is at most 20 micrometers when the metal particle diameter is 50 micrometers, and an alloy layer of the high melting point metal particles and the main component of solder is formed around the high melting point metal particles. In addition, no voids at all are present in the solder. An electronic component according to the present invention has a semiconductor element bonded to a substrate with the above-described solder preform and has excellent resistance to heat cycles.
摘要:
A semiconductor device includes: first and second metallic plates, each of which includes a heat radiation surface and an inner surface; a semiconductor element between the metallic plates; a block between the second metallic plate and the semiconductor element; a solder member between the second metallic plate and the block; and a resin mold. The heat radiation surface is exposed from the resin mold. The second metallic plate includes a groove for preventing the solder member from expanding outside of the block. The groove is disposed on the inner surface and disposed on an outer periphery of the block. The second metallic plate further includes an inner surface member on an inner surface of the groove. The inner surface member has a solder wettability, which is larger than a solder wettability of the block.
摘要:
A semiconductor module includes a semiconductor device; a metal plate portion that includes a first surface on a side of the semiconductor device and has a fastening portion at an end thereof; a molded portion that is formed by molding a resin on the semiconductor device and the metal plate portion, a cooling plate portion that is a separate member from the metal plate portion, is provided on a side opposite to the first surface on the side of the semiconductor device, and includes fins on a side opposite to the side of the metal plate portion; wherein the fastening portion of the metal plate portion is exposed out of the molded portion, and the cooling plate portion includes a fastening portion at a position that corresponds to a position of the fastening portion of the metal plate portion.
摘要:
A power module according to the present invention includes a semiconductor device; a base part formed from an electrically conductive material on which the semiconductor device is mounted; a signal lead part formed from the same material as the base part, the signal lead part being electrically connected to the semiconductor device; and a thin plate lead part formed from the same material as the base part such that it is formed seamlessly from the base part and it is thinner than the base part, the thin plate lead part extending on the same side as the signal lead part with respect to the base part, wherein the thin plate lead part is electrically connected to a predetermined terminal of the semiconductor device via the base part such that it forms a potential detecting terminal for detecting a potential of the predetermined terminal of the semiconductor device.
摘要:
A semiconductor device includes a plurality of semiconductor elements each having a front surface and a back surface; a front surface-side heatsink that is positioned on a front-surface side of the semiconductor elements and dissipates heat generated by the semiconductor elements; a back surface-side heatsink that is positioned on a back surface-side of the semiconductor elements and dissipates heat generated by the semiconductor elements; a sealing material that covers the semiconductor device except for a front surface of the front surface-side heatsink and a back surface of the back surface-side heatsink; a primer that is coated on at least one of the front surface-side heatsink and the back surface-side heatsink and improves contact with the sealing member; and a protruding portion positioned between the plurality of semiconductor elements, on at least one of the back surface of the front surface-side heatsink and the front surface of the back surface-side heatsink.
摘要:
A problem to be solved is to provide a lead frame and a power module having high material yield.A lead frame includes a plurality of first leads extending to one side of an area in which a semiconductor device is disposed in a planar view; a plurality of second leads extending to another side that is opposite the one side of the area in which the semiconductor device is disposed in a planar view; a third lead arranged outside of one of the plurality of first leads positioned at an edge of the plurality of first leads in a planar view; and a wiring part that is connected to the third lead, acts as a part of a guide frame of the plurality of first leads, the plurality of second leads, and the third lead, and acts as a wiring connected to the third lead after parts of the guide frame other than the part of the guide frame have been cut off.
摘要:
A power module according to the present invention includes a semiconductor device; a base part formed from an electrically conductive material on which the semiconductor device is mounted; a signal lead part formed from the same material as the base part, the signal lead part being electrically connected to the semiconductor device; and a thin plate lead part formed from the same material as the base part such that it is formed seamlessly from the base part and it is thinner than the base part, the thin plate lead part extending on the same side as the signal lead part with respect to the base part, wherein the thin plate lead part is electrically connected to a predetermined terminal of the semiconductor device via the base part such that it forms a potential detecting terminal for detecting a potential of the predetermined terminal of the semiconductor device.