摘要:
A support substrate includes a first surface and a second surface located above the level of the first surface. Chips are mounted on the first surface. A first insulating film is disposed over each chip. First conductive plugs are connected to the chip extending through each first insulating film. Filler material made of resin filling a space between chips. Wirings are disposed over the first insulating film and the filler material for interconnecting different chips. The second surface, an upper surface of the first insulating film and an upper surface of the filler material are located at the same level.
摘要:
After a copper interconnection is formed above a substrate, a surface of the copper interconnection is activated by performing acid cleaning. Thereafter, the substrate is immersed in a BTA (Benzo triazole) aqueous solution to form a protection film covering the surface of the copper interconnection. At this time, Cu—N—R bonds (R is an organic group) are formed in grain boundary portions in the surface of the copper interconnection. Thereafter, the protection film is removed by performing alkaline cleaning. The Cu—N—R bonds remain in the grain boundary portions in the surface of the copper interconnection even after the protection film is removed. Subsequently, the surface of the copper interconnection is subjected to an activation process, and a barrier layer is formed thereafter by electroless-plating the surface of the copper interconnection with NiP or CoWP.
摘要:
A support substrate includes a first surface and a second surface located above the level of the first surface. Chips are mounted on the first surface. A first insulating film is disposed over each chip. First conductive plugs are connected to the chip extending through each first insulating film. Filler material made of resin filling a space between chips. Wirings are disposed over the first insulating film and the filler material for interconnecting different chips. The second surface, an upper surface of the first insulating film and an upper surface of the filler material are located at the same level.
摘要:
A silicic coating of 2.4 g/cm3 or higher density, obtained by forming a silicic coating precursor with the use of at least one type of silane compound having a photosensitive functional group and thereafter irradiating the silicic coating precursor with at least one type of light. This silicic coating can be used as a novel barrier film or stopper film for semiconductor device.
摘要翻译:通过使用至少一种具有光敏官能团的硅烷化合物形成硅涂层前体,然后用至少一种类型的光照射硅涂层前体,得到2.4g / cm 3或更高密度的硅质涂层。 这种硅涂层可用作半导体器件的新型阻挡膜或阻挡膜。
摘要:
The invention provides an agent for post-etch treating a silicon dielectric film, including: at least one nitrogen-containing substance selected from the group consisting of ammonium bases and amine compounds; an acid; and at least one silicon-containing compound containing silicon, carbon and hydrogen. According to the present invention, it becomes possible to suppress an increase in the dielectric constant of a silicon dielectric film caused by etching.
摘要:
An insulating film material, which contains a polycarbosilane compound expressed by the following structural formula 1: where R1 may be the same or different to each other in the unit repeated “n” times, and each represents C1-4 hydrocarbon or aromatic hydrocarbon; R2 may be the same or different to each other in the unit repeated “n” times, and each represents C1-4 hydrocarbon or aromatic hydrocarbon; n is an integer of 5 to 5,000.
摘要:
An interconnection substrate including: a first insulating film made of a silicon compound, an adhesion enhancing layer formed on the first insulating film, and a second insulting film made of a silicon compound and formed on the adhesion enhancing layer, wherein the first insulating film and the second insulating film are combined together with a component having a structure represented by General Formula (1) described below: Si—CXHY—Si General Formula (1) where y is equal to 2x and is an even integer.
摘要:
The method of manufacturing a semiconductor device includes forming an insulating film of a silicon compound-group insulation film; forming an opening in the insulation film, applying an active energy beam in an atmosphere containing hydrocarbon gas to form a barrier layer of a crystalline SiC, and forming an interconnection structure of copper in the opening with the barrier layer formed in.
摘要:
The method of manufacturing a semiconductor device includes forming an insulating film of a silicon compound-group insulation film; forming an opening in the insulation film, applying an active energy beam in an atmosphere containing hydrocarbon gas to form a barrier layer of a crystalline SiC, and forming an interconnection structure of copper in the opening with the barrier layer formed in.
摘要:
To provide an insulating film material that can be advantageously used for forming an insulating film having a low dielectric constant and excellent resistance to damage, such as etching resistance and resistance to liquid reagents, a multilayer interconnection structure in which a parasitic capacitance between the interconnections can be reduced, efficient methods for manufacturing the multilayer interconnection structure, and an efficient method for manufacturing a semiconductor device with a high speed and reliability. The insulating film material contains at least a silicon compound having a steric structure represented by Structural Formula (1) below. where, R1, R2, R3, and R4 may be the same or different and at least one of them represents a functional group containing any of a hydrocarbon and an unsaturated hydrocarbon.