摘要:
A method of fabricating a multi-layer interconnected substrate structure. The inventive method includes forming a multi-layer structure from multiple, pre-fabricated power and/or signal substrates which are laminated together. A drill is then used to form a via through the surface of a ring-type pad down to a desired depth in the multi-layer structure. The via hole is cleaned and then filled with a conductive material. The via so formed between two or more substrates is self-aligned by using the ring pad(s). This contributes to an increased signal routing density compared to conventional methods.
摘要:
A multichip module substrate for use in a three-dimensional multichip module, and methods of making the same, are disclosed. The substrate comprises a thin film structure, for routing signals to and from integrated circuit chips, formed over a rigid support base. Apertures are formed in the support base exposing the underside of the thin film structure, thereby allowing high density connectors to be mounted on both surfaces of the thin film structure, greatly enhancing the ability to communicate signals between adjacent substrates in the chip module. This avoids the need to route the signals either through the rigid support base or to the edges of the thin film structure. Power and ground, which do not require a high connection density, are routed in low impedance paths through the support base. Preferably, the thin film structure is made of alternating layers of patterned metal, such as copper, and a low dielectric organic polymer, such as a polyimide.
摘要:
A method of constructing an electronic circuit assembly comprising forming at least one electrode on a substrate; forming a layer of undercladding material upon the substrate and over the electrode; and forming a wave guide core layer on the layer of cladding material. The wave guide layer is patterned to produce at least one optical wave guide and exposed undercladding material. The method of constructing further includes forming a layer of overcladding material upon the exposed undercladding material and over the optical wave guide; forming at least one via aperture through the overcladding material and the undercladding material; and disposing a conductive material in the via aperture to produce an electronic circuit assembly.
摘要:
The present invention is directed to a new bonding pad structure that includes a copper pad and a pad surface finish comprising multiple layers of solder. The multiple layers of solder include at least a layer of eutectic solder (or a layer of pure-Sn solder) covering the copper pad and a layer of high-Pb solder covering the layer of eutectic solder (or the layer of pure-Sn solder). Since the layer of high-Pb solder is significantly thicker than the eutectic solder layer (or the layer of pure-Sn solder), there is insufficient tin supply in the eutectic solder (or the layer of pure-Sn solder) for forming a thick Cu/Sn intermetallic layer on the copper pad. Instead, a thin Cu/Sn intermetallic layer is formed on the copper pad and there is less likelihood of forming a crack in the thin Cu/Sn intermetallic layer.
摘要:
A method for deplating defective capacitors comprising forming a plurality of capacitors on a semiconductor substrate, forming a plurality of metal contacts on the plurality of capacitors, and depositing a layer of photoresist on the semiconductor substrate. The photoresist layer is patterned so that the plurality of metal contacts are exposed, which are then contacted with an electrically conductive solution. The metal contacts, which are disposed over defective capacitors, are subsequently deplated. A method for forming a multi-chip module comprising forming a thin-film polymeric interconnect structure having a pair of sides, one of which is disposed on a silicon substrate having active or passive devices and the other of which has a computer chip mounted thereon. A multi-chip module formed by the method.
摘要:
Provided are a semiconductor low-K Si die flip chip package with warpage control and fabrication methods for such packages. The packages include heat spreaders that are attached to the low-K Si die and packaging substrate. In general, the modulus of the thermal interface material, which is used to attach the heat spreader to the low-K Si die, is selected as high as possible relative to other commercially available thermal interface materials. On the other hand, the modulus of the adhesive, which is used to attach the heat spreader via an optional stiffener to the substrate, is selected as low as possible relative to other commercially available adhesives. The result is a package with less bowing and so improved co-planarity (in compliance with industry specifications) with the surface to which it is ultimately bound. Moreover, the low-K Si die and package reliabilities are thereby enhanced.
摘要:
Provided are a semiconductor low-K Si die flip chip package with warpage control and fabrication methods for such packages. The packages include heat spreaders that are attached to the low-K Si die and packaging substrate. In general, the modulus of the thermal interface material, which is used to attach the heat spreader to the low-K Si die, is selected as high as possible relative to other commercially available thermal interface materials. On the other hand, the modulus of the adhesive, which is used to attach the heat spreader via an optional stiffener to the substrate, is selected as low as possible relative to other commercially available adhesives. The result is a package with less bowing and so improved co-planarity (in compliance with industry specifications) with the surface to which it is ultimately bound. Moreover, the low-K Si die and package reliabilities are thereby enhanced.
摘要:
A three dimensional module for housing a plurality of integrated circuit chips is shown. The IC chips are mounted in rows on a plurality of substrates. Parallel to each row are communications bars which provide signal paths allowing chips on one substrate to communicate with those on another substrate. The communications bars also serve as spacers between substrates, thereby forming cooling channels. The IC chips are disposed in the cooling channels so that they come into direct contact with the cooling fluid. Signal lines to and from the IC chips are kept as separated as possible from the power lines so as to minimize noise. To this end, relatively thick power supply straps are mounted to each substrate below each row of IC chips. The power supply straps are, in turn, connected to power feed straps such that a very low impedance power supply path to the IC chips is maintained. The overall design of the three dimensional structure of the present invention is highly modular to facilitate high yield fabrication and repair.