摘要:
The present invention discloses a assembling method, a manufacturing method, an device and an electronic apparatus of flip-die. The method for assembling a flip-die, comprises: temporarily bonding the flip-die onto a laser-transparent first substrate, wherein bumps of the flip-die are located on the side of the flip-die opposite to the first substrate; aligning the bumps with pads on a receiving substrate; irradiating the original substrate with laser from the first substrate side to lift-off the flip-die from the first substrate; and attaching the flip-die on the receiving substrate. A faster assembly rate can be achieved by using the present invention. A smaller chip size can be achieved by using the present invention. A lower profile can be achieved by using the present invention.
摘要:
A contact smart card (100, 101) comprises a smart card contact pad (10) and an IC chip (200, 300). The smart card contact pad 10 includes an imageable circuit substrate (12), a card-reader contact element (14) on a first side (16) of the imageable circuit substrate (12), and a, preferably flip-chip, connection element (18) on a second side (20) of the imageable circuit substrate (12) which is opposite the first side (16). The card-reader contact element (14) has a noble metal electrically conductive surface (30), and the connection element (18) has a chip terminal connection surface (36) which is not a noble metal. The IC chip (200, 300) is preferably flip-chip mounted at the second side (20) of the imageable circuit substrate (12) and electrically connected to the chip terminal connection surface (36). Furthermore, the chip terminal connection surface is preferably an organometallic electrically conductive corrosion protection layer.
摘要:
The present invention discloses a assembling method, a manufacturing method, an device and an electronic apparatus of flip-die. The method for assembling a flip-die, comprises: temporarily bonding the flip-die onto a laser-transparent first substrate, wherein bumps of the flip-die are located on the side of the flip-die opposite to the first substrate; aligning the bumps with pads on a receiving substrate; irradiating the original substrate with laser from the first substrate side to lift-off the flip-die from the first substrate; and attaching the flip-die on the receiving substrate. A faster assembly rate can be achieved by using the present invention. A smaller chip size can be achieved by using the present invention. A lower profile can be achieved by using the present invention.
摘要:
The present invention relates generally to compositions for use in biological and chemical separations, as well as other applications. More specifically, the present invention relates to hybrid felts fabricated from electrospun nanofibers with high permeance and high capacity. Such hybrid felts utilize derivatized cellulose, and at least one non-cellulose-based polymer that may be removed from the felt by subjecting it to moderately elevated temperatures and/or solvents capable of dissolving the non-cellulose-based polymer to leave behind a porous nanofiber felt having more uniform pore sizes and other enhanced properties when compared to single component nanofiber felts.
摘要:
A sealing and bonding material structure for joining semiconductor wafers having monolithically integrated components. The sealing and bonding material are provided in strips forming closed loops. There are provided at least two concentric sealing strips on one wafer. The strips are laid out so as to surround the component(s) on the wafers to be sealed off when wafers are bonded together. The material in the strips is a material bonding the semiconductor wafers together and sealing off the monolithically integrated components when subjected to force and optionally heating. A monolithically integrated electrical and/or mechanical and/or fluidic and/or optical device including a first substrate and a second substrate, bonded together with the sealing and bonding structure, and a method of providing a sealing and bonding material structure on at least one of two wafers and applying a force and optionally heat to the wafers to join them are described.