摘要:
A solder alloy having a solderability comparable to that of a conventional Pb—Sn solder alloy without having a detrimental effect on the environment and a soldered bond using the same. A solder alloy consisting of Zn: 4.0-10.0 wt %, In: 1.0 to 15.0 wt %, Al: 0.0020 to 0.0100 wt %, and the balance of Sn and unavoidable impurities. A soldered bond of an electric or electronic device composed of the above solder alloy.
摘要:
A Pb-free solder alloy and a soldered bond using the same, in which the solder alloy has no harmful environmental effect but has a solderability comparable to that of the conventional Pb—Sn solder alloy. The solder alloy of the present invention either consists of Zn: 3.0-14.0 wt %, Al: 0.0020-0.0080 wt %, and the balance of Sn and unavoidable impurities or consists of Zn: 3.0-14.0 wt %, Bi: 3.0-6.0 wt %, Al: 0.0020-0.0100 wt %, and the balance of Sn and unavoidable impurities. The soldered bond of the present invention consists of either of the present inventive solder alloys.
摘要:
A solder paste, includes a flux, a solder alloy particle scattered or mixed in the flux and including Sn and Zn as composition elements, and a metal particle scattered or mixed in the flux and including an element in the IB group in the periodic table as a composition element.
摘要:
The present invention provides a soldering method and a soldered joint securing a strength of joint equivalent to soldering using a conventional Pb—Sn solder alloy without having a detrimental effect on the environment and without causing a rise in cost. A soldering method comprising a step of covering Cu electrodes of electronic equipment by a rust-proofing coating consisting of an organic compound including N and a step of forming soldered joints on the covered Cu electrodes, by using a solder material consisting of at least 2.0 wt % and less than 3 wt % of Ag, 0.5 to 0.8 wt % of Cu, and a balance of Sn and unavoidable impurities. The solder material used in the present invention further contains not more than 3 wt % in total of at least one element selected from the group consisting of Sb, In, Au, Zn, Bi, and Al.
摘要:
A method of bonding a piezoelectric element and an electrode, including the steps of forming a first coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the piezoelectric element, and forming a second coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the electrode. The combination of the materials of the first and second coatings is preferably Au/Au, Au/Al, Zn/Cu, or Sn/Cu. The method further includes the step of bringing the first and second coatings into close contact with each other and heating them under pressure to form a metallic bond or intermetallic compound between the first and second coatings, thereby bonding the piezoelectric element and the electrode.
摘要:
A method of assembling a micro-actuator is provided in which a base frame having a plurality of actuator bases is placed on a stage, a first adhesive is applied to each of the actuator bases, and a base electrode frame having a plurality of base electrodes is placed on the first adhesive. The first adhesive is semi-cured by heating and pressing. A second adhesive is applied to each of the base electrodes, and a plurality of piezoelectric elements are placed on the second adhesive. The second adhesive is semi-cured by heating and pressing. A third adhesive is,applied to the piezoelectric elements, and a movable electrode frame having a plurality of movable electrodes is placed on the third adhesive. The third adhesive is semi-cured by heating and pressing. Next, a fourth adhesive is applied to each of the movable electrodes, and a hinge plate frame having a plurality of hinge plates is placed on the fourth adhesive. The fourth adhesive is semi-cured by heating and pressing. Finally, the adhered laminate thus obtained is placed in a heating furnace, and is heated at a predetermined temperature for a predetermined period of time, whereby each of the adhesives is fully cured.
摘要:
A method of bonding a piezoelectric element and an electrode, including the steps of forming a first coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the piezoelectric element, and forming a second coating of a material selected from the group consisting of Au, Al, Zn, Cu, and Sn on a bonding surface of the electrode. The combination of the materials of the first and second coatings is preferably Au/Au, Au/Al, Zn/Cu, or Sn/Cu. The method further includes the step of bringing the first and second coatings into close contact with each other and heating them under pressure to form a metallic bond or intermetallic compound between the first and second coatings, thereby bonding the piezoelectric element and the electrode.
摘要:
A lead-free solder alloy composition contains Sn, Bi and In, with respective contents such that the solder alloy composition provides a liquidus temperature below the heat resistant temperature of a work to be soldered. The alloy contains not more than about 60 wt % Bi; not more than about 50 wt % In; optionally at least one element selected from Ag, Zn, Ge, Ga, Sb, and P; and Sn. Also, lead-free solder powders containing same, and printed circuit boards, electronic components and electronic apparati employing such alloy.
摘要:
A lead-free solder alloy composition containing Sn, Ag and Bi, with respective concentrations set such that the lead-free solder alloy has a melting temperature lower than a predetermined heat-resistant temperature of a work to be soldered.
摘要:
A semiconductor device comprises a semiconductor element having electrodes and metal bumps are attached to the electrodes. The metal bumps include copper cores and gold surface layers covering the cores. In addition, the metal bumps may include gold bump elements and solder bump elements connected together.