Abstract:
A mounting substrate includes a through-hole 13 formed in a substrate 10, a first land part 21, a second land part 31, a first component attaching part 22, a second component attaching part 32, a conductive layer 14, and a filling member 15 filled into a part of the through-hole 13. A shortest distance allowable value L0 from the center of the first land part 21 to a component 51 is determined on the basis of the volume Vh of a part of the through-hole 15 positioned above a top surface of the filling member 15 on the side of the first land part 21, the length L1 of the component 51 to be mounted to the first component attaching part 22, and the maximum allowable value of the inclination of the component 51 to be mounted to the first component attaching part 22 relative to the first surface 11 of the substrate 10.
Abstract:
An aircraft LED light unit comprises at least one printed circuit board which comprises at least one metal core layer and at least one dielectric layer, and at least one LED disposed on the printed circuit board and which comprises an anode and a cathode for electrically coupling to a power source. One of the anode and cathode of the at least one LED is connected to an electrical conductor which is disposed on the dielectric layer and is coupled to a first terminal of the power source, wherein the dielectric layer electrically isolates the electrical conductor from the metal core layer, and the other one of the anode and cathode of the at least one LED is connected to the metal core layer of the at least one printed circuit board, wherein the metal core layer is coupled to a second terminal of the power source.
Abstract:
According to one embodiment, an electronic device comprises a circuit board, an electrical component, and a measurement unit. The circuit board has a first face. The electrical component includes a second face electrically connected to the first face via a bonding material, a first end in a first direction along the second face, and a second end. The second end is opposite to the first end in the first direction. The measurement unit is configured to measure a characteristic changing depending on a conductivity of the bonding material. A first distance between the first face and the first end is shorter than a second distance between the first face and the second end. The measurement unit includes a first measurement unit configured to measure the characteristic of a part of the bonding material. The part is adjacent to the first end.
Abstract:
A chip package includes an optical integrated circuit (such as a hybrid integrated circuit) and an integrated circuit that are proximate to each other in the chip package. The integrated circuit includes electrical circuits, such as memory or a processor, and the optical integrated circuit communicates optical signals with very high bandwidth. Moreover, a front surface of the integrated circuit is electrically coupled to a top surface of an interposer, and this top surface is in turn electrically coupled to a front surface of an input/output (I/O) integrated circuit that faces the top surface. Furthermore, the front surface of the I/O integrated circuit is electrically coupled to a top surface of the optical integrated circuit, where the top surface of the optical integrated circuit faces the front surface of the I/O integrated circuit.
Abstract:
An assembly is provided of an electro-physical transducer (10) on a flexible foil (20) with a carrier (40). The flexible foil (20) has a first main surface (22) provided with at least a first electrically conductive track (24) connected to the electro-physical transducer and opposite said first main surface a second main surface (23) facing towards the carrier. At least a first incision (25a) extends through the flexible foil alongside said at least a first electrically conductive track, therewith defining a strip shaped portion (27) of the flexible foil that carries a portion of the at least a first electrically conductive track. The at least a first electrically conductive track is electrically connected to an electrical conductor (421) of the carrier, and the flexible foil is attached to the carrier with its strip shaped portion.
Abstract:
A chip package includes an optical integrated circuit (such as a hybrid integrated circuit) and an integrated circuit that are adjacent to each in the chip package. The integrated circuit includes electrical circuits, such as memory or a processor, and the optical integrated circuit communicates optical signals with very high bandwidth. Moreover, a front surface of the integrated circuit is electrically coupled to a front surface of the optical integrated circuit by a top surface of the interposer, where the top surface faces the front surface of the integrated circuit and the front surface of the optical integrated circuit. Furthermore, the integrated circuit and the optical integrated circuit may be on a same side of the interposer. By integrating the optical integrated circuit and the integrated circuit in close proximity, the chip package may facilitate improved performance compared to chip packages with electrical interconnects.
Abstract:
An assembly of a plurality of tiles (1) with a carrier (40). The tiles (1) comprise a foil (20) with an electro-physical transducer (10) and electrical connectors (24, 28) to said transducer. The tiles are mechanically and electrically coupled to the carrier in a connection portion (1c) of said tiles.
Abstract:
A LED directional illumination energy-saving luminaire and a manufacturing method thereof. The luminaire comprises: a circuit board with an X direction and a Y direction defined; and illumination units including a first illumination unit arranged at the center of the circuit board, and two second illumination units arranged at both sides of the first illumination unit. Each illumination unit includes LEDs mounted to said circuit board in a tilted state with said LED bodies positioned at a predetermined height from the circuit board, and said LEDs are arranged at intervals in an array along said X direction and Y direction and distributed with respect to the center of said array. Each LED deviates from both X and Y directions at a predeterminative angle, so that the illumination units can form predeterminative project angles in the X direction and the Y direction respectively.
Abstract:
There is provided a liquid ejecting head including a channel forming member in which a pressure generating chamber is provided, a piezoelectric element that is provided at one surface side of the channel forming member, a terminal portion electrically connected to the piezoelectric element; the terminal portion being provided at the one surface side of the channel forming member, a wiring substrate which has a wiring layer, and an adhesive layer for electrically connecting the wiring layer and the terminal portion and for combing the wiring substrate and the channel forming member, the adhesive layer being formed by an anisotropic conductive material. A gap layer that is electrically discontinuous with the terminal portion and the wiring layer is provided on at least one surface of the channel forming member and the wiring substrate in an area in which the adhesive layer is provided.
Abstract:
A printed wiring board includes a first substrate having a recess portion and multiple conductors, a second substrate having multiple conductors and inserted in the recess portion of the first substrate such that the first substrate has a surface exposing at least a portion of a surface of the second substrate. The multiple conductors in the first substrate is electrically connected to the multiple conductors in the second substrate, and the second substrate has density of the conductors which is higher than density of the conductors of the first substrate.