摘要:
A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
摘要:
The present invention is directed to nanowire structures and interconnected nanowire networks comprising such structures, as well as methods for their production. The nanowire structures comprise a nanowire core, a carbon-based layer, and in additional embodiments, carbon-based structures such as nanographitic plates consisting of graphenes formed on the nanowire cores, interconnecting the nanowire structures in the networks. The networks are porous structures that can be formed into membranes or particles. The nanowire structures and the networks formed using them are useful in catalyst and electrode applications, including fuel cells, as well as field emission devices, support substrates and chromatographic applications.
摘要:
This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates, as well as methods and uses for such substrates.
摘要:
The present invention is directed to compositions of matter, systems, and methods to manufacture nanowires. In an embodiment, a buffer layer is placed on a nanowire growth substrate and catalytic nanoparticles are added to form a catalytic-coated nanowire growth substrate. Methods to develop and use this catalytic-coated nanowire growth substrate are disclosed. In a further aspect of the invention, in an embodiment a nanowire growth system using a foil roller to manufacture nanowires is provided.
摘要:
The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.
摘要:
The present invention generally discloses the use of a nanostructured non-silicon thin film (such as an alumina or aluminum thin film) on a supporting substrate which is subsequently coated with an active layer of a material such as silicon or tungsten. The base, underlying non-silicon material generates enhanced surface area while the active layer assists in incorporating and transferring energy to one or more analytes adsorbed on the active layer when irradiated with a laser during laser desorption of the analyte(s). The present invention provides substrate surfaces that can be produced by relatively straightforward and inexpensive manufacturing processes and which can be used for a variety of applications such as mass spectrometry, hydrophobic or hydrophilic coatings, medical device applications, electronics, catalysis, protection, data storage, optics, and sensors.
摘要:
A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
摘要:
Methods of positioning and orienting nanostructures, and particularly nanowires, on surfaces for subsequent use or integration. The methods utilize mask based processes alone or in combination with flow based alignment of the nanostructures to provide oriented and positioned nanostructures on surfaces. Also provided are populations of positioned and/or oriented nanostructures, devices that include populations of positioned and/or oriented nanostructures, systems for positioning and/or orienting nanostructures, and related devices, systems and methods.
摘要:
This invention provides composite materials comprising nanostructures (e.g., nanowires, branched nanowires, nanotetrapods, nanocrystals, and nanoparticles). Methods and compositions for making such nanocomposites are also provided, as are articles comprising such composites. Waveguides and light concentrators comprising nanostructures (not necessarily as part of a nanocomposite) are additional features of the invention.
摘要:
Porous and/or curved nanofiber bearing substrate materials are provided having enhanced surface area for a variety of applications including as electrical substrates, semipermeable membranes and barriers, structural lattices for tissue culturing and for composite materials, production of long unbranched nanofibers, and the like.