Abstract:
Embodiments of the invention provide methods of processing a substrate having a stack of spaced oxide layers with gaps between the oxide layers. A metallic nucleation layer is formed in the gaps and a cobalt film is deposited on the nucleation layer to form wordlines.
Abstract:
Methods and apparatus for depositing a cobalt layer in features formed on a substrate are provided herein. In some embodiments, a method of depositing a cobalt layer atop a substrate includes: (a) providing a substrate to a substrate support that is rotatable between two processing positions; (b) exposing the substrate to a cobalt containing precursor at a first processing position to deposit a cobalt layer atop the substrate; (c) rotating the substrate having the deposited cobalt layer to a second processing position; and (d) treating the substrate at the second processing position to remove contaminants from the cobalt layer.
Abstract:
Ampoules for a semiconductor manufacturing precursors and methods of use are described. The ampoules include a container with an inlet port and an outlet port. The inlet port has a showerhead that the end within the container. The showerhead has at least two angled nozzles to direct the flow of gas within the cavity so that the gas flow is not perpendicular to the surface of a liquid within the ampoule.
Abstract:
Methods to selectively deposit capping layers on a copper surface relative to a dielectric surface comprising separately the copper surface to a cobalt precursor gas and a tungsten precursor gas, each in a separate processing chamber. The copper surface and the dielectric surfaces can be substantially coplanar. The combined thickness of cobalt and tungsten capping films is in the range of about 2 Å to about 60 Å.
Abstract:
Provided are gas distribution apparatus with a delivery channel having an inlet end, an outlet end and a plurality of apertures spaced along the length. The inlet end is connectable to an inlet gas source and the outlet end is connectible with a vacuum source. Also provided are gas distribution apparatus with spiral delivery channels, intertwined spiral delivery channels, splitting delivery channels, merging delivery channels and shaped delivery channels in which an inlet end and outlet end are configured for rapid exchange of gas within the delivery channels.
Abstract:
Embodiments described herein provide a self-limiting and saturating Si—Ox bilayer process which does not require the use of a plasma or catalyst and that does not lead to undesirable substrate oxidation. Methods of the disclosure do not produce SiO2, but instead produce a saturated Si—Ox film with —OH termination to make substrate surfaces highly reactive towards metal ALD precursors to seed high nucleation and growth of gate oxide ALD materials.
Abstract:
Methods for etching a substrate are provided herein. In some embodiments, a method for etching a substrate disposed within a processing volume of a process chamber includes: (a) exposing a first layer disposed atop the substrate to a first gas comprising tungsten chloride (WClx) for a first period of time and at a first pressure, wherein x is 5 or 6; (b) purging the processing volume of the first gas using an inert gas for a second period of time; (c) exposing the substrate to a hydrogen-containing gas for a third period of time to etch the first layer after purging the processing volume of the first gas; and (d) purging the processing volume of the hydrogen-containing gas using the inert gas for a fourth period of time.
Abstract:
Processing methods comprising exposing a substrate to an optional nucleation promoter followed by sequential exposure of a first reactive gas comprising a metal oxyhalide compound and a second reactive gas to form a metal film on the substrate.
Abstract:
Corrosion resistant substrate supports and methods of making corrosion resistant substrate supports are provided herein. In some embodiments, a method of making corrosion resistant substrate supports includes exposing the substrate support disposed within a substrate processing chamber to a process gas comprising an aluminum containing precursor; and depositing an aluminum containing layer atop surfaces of the substrate support.
Abstract:
Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.