摘要:
Provided is a test structure for testing an unpackaged semiconductor wafer. The test structure includes a force-application component that is coupled to an interconnect structure of the semiconductor wafer. The force-application component is operable to exert a force to the semiconductor wafer. The test structure also includes first and second test portions that are coupled to the interconnect structure. The first and second test portions are operable to measure an electrical performance associated with a predetermined region of the interconnect structure. The first and second test portions are operable to measure the electrical performance while the force is exerted to the semiconductor wafer.
摘要:
A die includes a metal pad, a passivation layer, and a patterned buffer layer over the passivation layer. The patterned buffer layer includes a plurality of discrete portions separated from each other. An under-bump-metallurgy (UBM) is formed in an opening in the patterned buffer layer and an opening in the passivation layer. A metal bump is formed over and electrically coupled to the UBM.
摘要:
A method for increasing capacitances of capacitors and the resulting integrated structure are provided. The method includes providing a substrate, forming a low-k dielectric layer over the substrate wherein the low-k dielectric layer includes a capacitor region and a non-capacitor region, forming a capacitor in the capacitor region, forming a masking layer which masks the non-capacitor region while leaving the capacitor region exposed, performing a local treatment to increase a k value of the low-k dielectric layer in the capacitor region, and removing the masking layer.
摘要:
A method for increasing capacitances of capacitors and the resulting integrated structure are provided. The method includes providing a substrate, forming a low-k dielectric layer over the substrate wherein the low-k dielectric layer includes a capacitor region and a non-capacitor region, forming a capacitor in the capacitor region, forming a masking layer which masks the non-capacitor region while leaving the capacitor region exposed, performing a local treatment to increase a k value of the low-k dielectric layer in the capacitor region, and removing the masking layer.
摘要:
A pad structure in a semiconductor wafer for wafer testing is described. The pad structure includes at least two metal pads connected there-between by a plurality of conductive visa in one or more insulation layers. A plurality of contact bars in contact with the bottom-most metal pad extends substantially vertically from the bottom-most metal pad into the substrate. An isolation structure substantially surrounds the plurality of contact bars to isolate the pad structure.
摘要:
An inductor device and method of forming the inductor device are provided. In some embodiments the inductor device includes a post passivation interconnect (PPI) layer disposed and an under bump metallization (UBM) layer, each disposed over a substrate. The PPI layer forms a coil and dummy pads. The dummy pads are disposed around a substantial portion of the coil to shield the coil from electromagnetic interference. A first portion of the UBM layer is electrically coupled to the coil and configured to interface with an electrical coupling member.
摘要:
A package on packaging structure comprising a first package and a second package provides for improved thermal conduction and mechanical strength by the introduction of a thermally conductive substrate attached to the second package. The first package has a first substrate and a first integrated circuit. The second package has a second substrate containing through vias that has a first coefficient of thermal expansion. The second package also has a second integrated circuit having a second coefficient of thermal expansion located on the second substrate. The second coefficient of thermal expansion deviates from the first coefficient of thermal expansion by less than about 10 or less than about 5 parts-per-million per degree Celsius. A first set of conductive elements couples the first substrate and the second substrate. A second set of conductive elements couples the second substrate and the second integrated circuit.
摘要:
Methods and apparatus for solder connections. An apparatus includes a substrate having a conductive terminal on a surface; a passivation layer overlying the surface of the substrate and the conductive terminal; an opening in the passivation layer exposing a portion of the conductive terminal; at least one stud bump bonded to the conductive terminal in the opening and extending in a direction normal to the surface of the substrate; and a solder connection formed on the conductive terminal in the opening and enclosing the at least one stud bump. Methods for forming the solder connections are disclosed.
摘要:
A package on packaging structure comprising a first package and a second package provides for improved thermal conduction and mechanical strength by the introduction of a thermally conductive substrate attached to the second package. The first package has a first substrate and a first integrated circuit. The second package has a second substrate containing through vias that has a first coefficient of thermal expansion. The second package also has a second integrated circuit having a second coefficient of thermal expansion located on the second substrate. The second coefficient of thermal expansion deviates from the first coefficient of thermal expansion by less than about 10 or less than about 5 parts-per-million per degree Celsius. A first set of conductive elements couples the first substrate and the second substrate. A second set of conductive elements couples the second substrate and the second integrated circuit.
摘要:
A method includes measuring a first calibration kit in a wafer to obtain a first performance data. The wafer includes a substrate, and a plurality of dielectric layers over the substrate. The first calibration kit includes a first passive device over the plurality of dielectric layers, wherein substantially no metal feature is disposed in the plurality of dielectric layers and overlapped by the first passive device. The method further includes measuring a second calibration kit in the wafer to obtain a second performance data. The second calibration kit includes a second passive device identical to the first device and over the plurality of dielectric layers, and dummy patterns in the plurality of dielectric layers and overlapped by the second passive device. The first performance data and the second performance data are de-embedded to determine an effect of metal patterns in the plurality of dielectric layers to overlying passive devices.