摘要:
An internal combustion engine comprises a first engine bank and a second engine bank. A first intake valve is disposed in an intake port of a cylinder of the first engine bank, and is configured for metering the first flow of combustion air by periodically opening and closing according to a first intake valve lift and duration characteristic. A variable valve train control mechanism is configured for affecting the first intake valve lift and duration characteristic. Either a lift or duration of the first intake valve is modulated so as to satisfy an EGR control criterion.
摘要:
An ECU opens/closes an EGR valve (43) at a predetermined time (PI) to start blockage detection of an exhaust gas recirculation passage, increases an opening degree of a throttle valve (25) after start of the blockage detection over an opening degree immediately before the start of the blockage detection, and detects a blocking amount of the exhaust gas recirculation passage based on a change amount (ΔGN) in an internal pressure detected by a pressure sensor, which is a difference between the internal pressure detected when the EGR valve is opened and the internal pressure detected when the EGR valve is closed.
摘要:
An engine includes an exhaust gas recirculation circuit, an air throttle system, and a charging system. A method to control the engine includes determining a feed forward control command for a first selected one of the exhaust gas recirculation system, the air throttle system, and the charging system based on an inverse flow model of the first selected system. This includes monitoring a first input based upon an effective flow area of the first selected system, monitoring a second input based upon a pressure value within the first selected system, and determining the feed forward control command for the first selected system based upon the first input and the second input. The first selected system is controlled based upon the feed forward control command for the first selected system.
摘要:
Various methods and systems are provided for controlling exhaust gas recirculation in an engine. One embodiment for a system comprises an engine having first and second cylinder groups, and an exhaust gas recirculation (EGR) passage coupled between the first cylinder group and an intake manifold of the engine, flow of EGR through the EGR passage controlled by one or more EGR exhaust valves, and a controller configured to maintain a target intake gas concentration by adjusting the one or more EGR exhaust valves and adjusting fuel injection amounts to the first cylinder group differently than the second cylinder group.
摘要:
A method for operating an auto-ignition internal combustion engine that is operable in a single substance mode in which the internal combustion engine is supplied with self-igniting liquid fuel, and a dual substance mode in which the internal combustion engine is supplied with the liquid fuel as an ignition agent and gaseous or liquid alternative fuel, includes operating the internal combustion engine in the dual-substance mode at an increased exhaust gas recirculation rate relative to the single-substance mode, and throttling an air supply in an intake system of the internal combustion engine such that a lambda value in an exhaust gas of the internal combustion engine is in a range greater than 1 up to 1.3.
摘要:
For an upshift of a transmission, a model predictive control (MPC) module sets target intake and exhaust valve timings for changes in a torque request that occur during the upshift. A phaser actuator module controls intake valve phasing of an engine based on the target intake valve timing and controls exhaust valve phasing based on the target exhaust valve timing.
摘要:
Methods and systems are provided for reducing torque transients experienced when a dedicated EGR cylinder is deactivated to reduce EGR. Before deactivating the dedicated cylinder, an intake throttle position and spark timing of remaining engine cylinders is adjusted to build-up torque reserve in anticipation of a negative torque transient at deactivation. Then, the throttle position or spark timing is adjusted to reduce torque when a positive torque transient is expected.
摘要:
A method of controlling the operation of an air charging system is disclosed. A plurality of output parameters of the air charging system are monitored. An error between each one of the monitored output parameters and a target value thereof is calculated. Each one of the calculated errors is applied to a linear controller that yields a virtual input which is used to calculate a plurality of input parameters for the air charging system. Each one of the input parameters is used to determine the position of a corresponding actuator of the air charging system and operate of the actuators according to the determined position thereof. The inputs parameters are calculated with a non-linear mathematical model of the air charging system configured such that each one of the virtual inputs is in a linear relation with only one of the output parameters.
摘要:
A method and related apparatuses and systems for operating an engine that provides a high level of NOX to regenerate particulate matter deposited on a particulate filter. The method includes producing NOX in response to a NOX excess capacity value of a NOX reduction device. The method optionally includes determining that particulate matter exceeds an enhanced passive regeneration threshold amount before providing a high level of NOX. The method optionally includes producing a higher particulate emissions output value to warm the engine exhaust to bring an aftertreatment catalyst to an optimal operating temperature. The method can be implemented with a closed loop feedback controller, which may be configured to reduce particulate matter variation.
摘要:
A method and system for increasing regenerative energy available during deceleration by reducing engine pumping losses. The method includes a controller that reduces fuel delivery to the engine and closes an engine throttle during deceleration. The controller identifies the maximum kinetic energy available during deceleration and opens an exhaust gas recirculation (EGR) valve and engine throttle as necessary to reduce a vacuum in an engine intake manifold, thus minimizing engine pumping losses and increasing regenerative energy available during deceleration while ensuring that a catalyst temperature is above a catalyst temperature threshold.