Abstract:
An integrated circuit (IC) includes a glass substrate and a buried oxide layer. The IC additionally includes a first semiconductor device coupled to the glass substrate. The first semiconductor device includes a first gate and a first portion of a semiconductive layer coupled to the buried oxide layer. The first gate is located between the glass substrate and the first portion of the semiconductive layer and between the glass substrate and the buried oxide layer. The IC additionally includes a second semiconductor device coupled to the glass substrate. The second semiconductor device includes a second gate and a second portion of the semiconductive layer. The second gate is located between the glass substrate and the second portion of the semiconductive layer. The first portion is discontinuous from the second portion.
Abstract:
A particular device includes a substrate and a spiral inductor coupled to the substrate. The spiral inductor includes a first conductive spiral and a second conductive spiral overlaying the first conductive spiral. A first portion of an innermost turn of the spiral inductor has a first thickness in a direction perpendicular to the substrate. The first portion of the innermost turn includes a first portion of the first conductive spiral and does not include the second conductive spiral. A second portion of the innermost turn includes a first portion of the second conductive spiral. A portion of an outermost turn of the spiral inductor has a second thickness in the direction perpendicular to the substrate that is greater than the first thickness. A portion of the outermost turn includes a second portion of the first conductive spiral and a second portion of the second conductive spiral.
Abstract:
Several novel features pertain to a hybrid transformer formed within a semiconductor die having multiple layers. The hybrid transformer includes a first set of windings positioned on a first layer of the die. The first layer is positioned above a substrate of the die. The first set of windings includes a first port and a second port. The first set of windings is arranged to operate as a first inductor. The hybrid transformer includes a second set of windings positioned on a second layer of the die. The second layer is positioned above the substrate. The second set of windings includes a third port, a fourth port and a fifth port. The second set of windings is arranged to operate as a second inductor and a third inductor. The first set of windings and the second set of windings are arranged to operate as a vertical coupling hybrid transformer.
Abstract:
An integrated circuit device includes a substrate. The integrated circuit device also includes a first conductive stack including a back-end-of-line (BEOL) conductive layer at a first elevation with reference to the substrate. The integrated circuit device also includes a second conductive stack including the BEOL conductive layer at a second elevation with reference to the substrate. The second elevation differs from the first elevation.
Abstract:
A three-dimensional (3D) orthogonal inductor pair is embedded in and supported by a substrate, and has a first inductor having a first coil that winds around a first winding axis and a second inductor having a second coil that winds around a second winding axis. The second winding axis is orthogonal to the first winding axis. The second winding axis intersects the first winding axis at an intersection point that is within the substrate.
Abstract:
Some features pertain to an integrated device (e.g., package-on-package (PoP) device) that includes a substrate, a first die, a first encapsulation layer, a first redistribution portion, a second die, a second encapsulation layer, and a second redistribution portion. The substrate includes a first surface and a second surface. The substrate includes a capacitor. The first die is coupled to the first surface of the substrate. The first encapsulation layer encapsulates the first die. The first redistribution portion is coupled to the first encapsulation. The second die is coupled to the second surface of the substrate. The second encapsulation layer encapsulates the second die. The second redistribution portion is coupled to the second encapsulation layer.
Abstract:
A two-stage power delivery network includes a voltage regulator and an interposer. The interposer includes a packaging substrate having an embedded inductor. The embedded inductor includes a set of traces and a set of through substrate vias at opposing ends of the traces. The interposer is coupled to the voltage regulator. The two-stage power delivery network also includes a semiconductor die supported by the packaging substrate. The two-stage power delivery network also includes a capacitor that is supported by the packaging substrate. The capacitor is operable to provide a decoupling capacitance associated with the semiconductor die and a capacitance to reduce a switching noise of the voltage regulator.
Abstract:
Some novel features pertain to an integrated device package (e.g., die package) that includes a package substrate, a die, an encapsulation layer and a first set of metal layers. The package substrate includes a first surface and a second surface. The die is coupled to the first surface of the package substrate. The encapsulation layer encapsulates the die. The first set of metal layers is coupled to a first exterior surface of the encapsulation layer. In some implementations, the first set of metal layers is configured to operate as a die-to-wire connector of the integrated device package. In some implementations, the integrated device package includes a second set of metal layers coupled to the second surface of the package substrate. In some implementations, the integrated device package includes a second set of metal layers coupled to a second exterior surface of the encapsulation layer.
Abstract:
A two-stage power delivery network includes a voltage regulator and an interposer. The interposer includes a packaging substrate having an embedded inductor. The embedded inductor includes a set of traces and a set of through substrate vias at opposing ends of the traces. The interposer is coupled to the voltage regulator. The two-stage power delivery network also includes a semiconductor die supported by the packaging substrate. The two-stage power delivery network also includes a capacitor that is supported by the packaging substrate. The capacitor is operable to provide a decoupling capacitance associated with the semiconductor die and a capacitance to reduce a switching noise of the voltage regulator.
Abstract:
A method includes biasing a first gate voltage to enable unipolar current to flow from a first region of a transistor to a second region of the transistor according to a field-effect transistor (FET)-type operation. The method also includes biasing a body terminal to enable bipolar current to flow from the first region to the second region according to a bipolar junction transistor (BJT)-type operation. The unipolar current flows concurrently with the bipolar current to provide dual mode digital and analog device in complementary metal oxide semiconductor (CMOS) technology.