Abstract:
Systems, methods and devices for in situ soil sterilization using contained microwave energy, and more specifically methods and devices for removing from the soil to a specified depth in situ substantially all biological pests. The method comprises exposing the specified depth of soil to sufficient energy flux, within a sufficiently short exposure time, of microwave frequency electromagnetic radiation at a frequency tuned to dissociate biopolymers. The device comprises: a source of microwave frequency electromagnetic radiation; a carriage; and, optionally a radiation shield and a cooling system. The carriage moves the source of electromagnetic radiation to an area for treatment and the radiation shield prevents leakage of radiation to undesired points. The cooling system maintains the device at a sufficiently cool temperature for reliable operation.
Abstract:
Carbon monoxide contained in reformate gas is removed by a preferential oxidation reaction in a catalyst, two preferential oxidation reactors (20A, 20B) being disposed in series. Valves (7, 8) supply air containing oxygen as an oxidizing agent individually to these preferential oxidation reactors (20A, 20B). Temperature sensors (9, 10) detect the catalyst temperatures of the preferential oxidation reactors (20A, 20B), and a controller (5), by adjusting the flow rate of the valves (7, 8) based on the detected temperatures, maximizes the carbon monoxide removal performance of the preferential oxidation reactors (20A, 20B), while preventing excessive catalyst temperature rise.
Abstract:
A pressure-measuring vessel system for microwave assisted chemical processes is disclosed. The vessel system includes a pressure resistant vessel that is otherwise transparent to microwave radiation, a pressure-resistant closure for the mouth of the vessel, with portions of the closure including a pressure resistant synthetic membrane, a pressure transducer external to the vessel, and a tube extending from the transducer, through the membrane and into the vessel for permitting the pressure inside the vessel to be applied against the transducer while the closure and membrane otherwise maintain the pressure resistant characteristics of the vessel.
Abstract:
Devices and methods for controlling and monitoring the progress and properties of multiple reactions are disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight. Computer-based methods are disclosed for process monitoring and control, and for data display and analysis.
Abstract:
Coded microparticles for use in chemical or biological library synthesis are produced by delineating particles in a plastics sheet supported on a substrate and removing the particles from the substrate.
Abstract:
A method for carrying out parallel reactions in a reactor having a plurality of individual reaction chambers under elevated pressure, in which the chambers are filled in parallel or series with liquid and/or solid reactants, the chambers are sealed using a common seal, subsequently pressurized and the reaction is carried out. An individual lid with a plurality of self-closing openings is used as the seal for the chambers, at least one opening being assigned to each chamber.
Abstract:
A method is provided for performing array microcrystallizations to determine suitable crystallization conditions for a molecule, the method comprising: forming an array of microcrystallizations, each microcrystallization comprising a drop comprising a mother liquor solution whose composition varies within the array and a molecule to be crystallized, the drop having a volume of less than 1 microliter; storing the array of microcrystallizations under conditions suitable for molecule crystals to form in the drops in the array; and detecting molecule crystal formation in the drops by taking images of the drops.
Abstract:
A high throughput oligonucleotide synthesizer is described that includes masks for selectively deblocking of oligonucleotide synthesis sites and the simultaneous addition of reagents to all wells of the plate. The synthesizer includes a multi-well plate, each well of which contains a substrate for oligonucleotide synthesis. The use of masks expedites oligonucleotide synthesis by allowing for rapid delivery of reagents to all wells simultaneously.
Abstract:
A synthetic strategy for the creation of large scale chemical diversity. Solid-phase chemistry, photolabile protecting groups, and photolithography are used to achieve light-directed spatially-addressable parallel chemical synthesis. Binary masking techniques are utilized in one embodiment. A reactor system, photoremovable protective groups, and improved data collection and handling techniques are also disclosed. A technique for screening linker molecules is also provided.
Abstract:
A method and system for economically packaging microarrays into sealed reaction chambers and storage vessels. A pocket strip is manufactured as a linear sequence of pockets, or wells, into which microarrays are positioned. A cover strip is then heat sealed to the upper surface of the pocket strip to create a linear sequence of sealed reaction chambers or storage vessels, each containing a microarray. Mechanical features or optical features are included along the length of the pocket strip to facilitate mechanical translation and positioning of microarrays embedded within the microarray strip. Septa are affixed to, or embedded within, the cover strip to provide resealable ports through which solutions can be introduced into, or extracted from, the reaction chambers. In an alternate embodiment, the microarrays are deposited directly onto the cover strip, eliminating the need for separate microarray substrates.