摘要:
A method for bonding an LED assembly (71) or other electronic package (31) to a substrate PCB containing a heat-sink (52), which utilizes layers of reactive multilayer foil (51) disposed between contacts (32, 34) of the electronic package 31 and the associated contact pads (55) on the supporting substrate PCB. By initiating an exothermic reaction in the reactive multilayer foil (51), together with an application of pressure, sufficient heat is generated between the contacts (32, 34) and the associated contact pads (55) to melt adjacent bonding material (54) to obtain good electrically and thermally conductive bonds between the contacts 32, 34 and contact pads (55) without thermally damaging the electronic package (31), heat-sensitive components (35) associated with the electronic package (31), or other the supporting substrate PCB.
摘要:
Applicants have discovered that electrostatic discharge (ESD) may, in some circumstances, result in current densities sufficient to ignite unprotected reactive composite materials. They have further discovered that a reactive composite material (RCM) can be protected from ESD ignition without adversely affecting the desirable properties of the RCM by the application of conducting and/or insulating materials at appropriate locations on the RCM. Thus ESD-protected RCM structures can be designed for such sensitive applications as ignition of propellants, generation of light bursts, and structural materials for equipment that may require controlled self-destruction.
摘要:
Applicants have discovered new composite materials and have developed a variety of new ways of making reactive composite materials (RCMs) and methods of controlling the properties and characteristics of the materials that are pertinent to numerous new or improved applications. This patent application is directed to new and improved ways of making reactive composite materials using mechanical deformation and making such materials with controlled, predictable characteristics. This application is also directed toward useful applications of the resulting materials.In accordance with the invention, RCMs are fabricated by a series of mechanical deformation steps. In the first deformation step, an assembly of reactive layers and/or particles is plastically deformed to reduce its cross sectional area by one-half or more. This severe initial deformation substantially eliminates the tendency of deformed layers to delaminate and eliminates the necessity of using specially cleaned metal layers. Portions of the deformed sheets are stacked or bent into a new assembly, and the new assembly is then deformed. The steps of assembly and deformation are repeated a sufficient number of times that the resulting materials are only locally layered but have relatively uniform reaction velocity and heat generating characteristics predictable by stochastic models derived herein. The resulting product is a controllable, locally layered reactive composite material (LLRCM) that can be fabricated quickly and is useful in a wide variety of applications.
摘要:
In accordance with the invention, containers or interfaces having two surfaces 201a and 201b to be joined, and a region to be sealed, are fused by providing between the surfaces 201a and 201b a thin strip or wire of RCM 102 embedded within a fusible material 101, applying pressure 205 and igniting the RCM 102. The released energy from the ignited RCM 102 results in a melting of the fusible material 101 and subsequent bonding of the fusible material 101 upon cooling to the 101 surrounding surfaces 201a and 201b, achieving a hermetic seal there between without the use of a separate gasket component.
摘要:
Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining lawyers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g. air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
摘要:
A method for bonding an LED assembly (71) or other electronic package (31) to a substrate PCB containing a heat-sink (52), which utilizes layers of reactive multilayer foil (51) disposed between contacts (32, 34) of the electronic package 31 and the associated contact pads (55) on the supporting substrate PCB. By initiating an exothermic reaction in the reactive multilayer foil (51), together with an application of pressure, sufficient heat is generated between the contacts (32, 34) and the associated contact pads (55) to melt adjacent bonding material (54) to obtain good electrically and thermally conductive bonds between the contacts 32, 34 and contact pads (55) without thermally damaging the electronic package (31), heat-sensitive components (35) associated with the electronic package (31), or other the supporting substrate PCB.
摘要:
A method for bonding a concentrating photovoltaic receiver module to a heat sink using a reactive multilayer foil as a local heat source, together with layers of solder, to provide a high thermal conductivity interface with long term reliability and ease of assembly.
摘要:
The invention includes a method of joining two components. The method includes providing at least two components to be joined, a reactive multilayer foil, and a compliant element, placing the reactive multilayer foil between the at least two components, applying pressure on the two components in contact with the reactive multilayer foil via a compliant element, and initiating a chemical transformation of the reactive multilayer foil so as to physically join the at least two components. The invention also includes two components joined using the aforementioned method.
摘要:
The invention includes a method of joining two components. The method includes providing at least two components to be joined, a reactive multilayer foil, and a compliant element, placing the reactive multilayer foil between the at least two components, applying pressure on the two components in contact with the reactive multilayer foil via a compliant element, and initiating a chemical transformation of the reactive multilayer foil so as to physically join the at least two components. The invention also includes two components joined using the aforementioned method.
摘要:
Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.