Abstract:
Methods for forming semiconductor devices, such as FinFETs, are provided. In an embodiment, a fin structure processing method includes removing a portion of a first fin of a plurality of fins formed on a substrate to expose a surface of a remaining portion of the first fin, wherein the fins are adjacent to dielectric material structures formed on the substrate; performing a deposition operation to form features on the surface of the remaining portion of the first fin by depositing a Group III-V semiconductor material in a substrate processing environment; and performing an etching operation to etch the features with an etching gas to form a plurality of openings between adjacent dielectric material structures, wherein the etching operation is performed in the same chamber as the deposition operation.
Abstract:
Methods of sub-10 nm fin formation are disclosed. One method includes patterning a first dielectric layer on a substrate to form one or more projections and a first plurality of spaces, and depositing a first plurality of columns in the first plurality of spaces. The first plurality of columns are separated by a second plurality of spaces. The method also includes depositing a second dielectric layer in the second plurality of spaces to form a plurality of dummy fins, removing the first plurality of columns to form a third plurality of spaces, depositing a second plurality of columns in the third plurality of spaces, removing the one or more projections and the plurality of dummy fins to form a fourth plurality of spaces, and depositing a plurality of fins in the fourth plurality of spaces. The plurality of fins have a width between 5-10 nm.
Abstract:
A semiconductor device is disclosed that has a semiconductor substrate having a crystal structure with a plane and a plane and a surface that forms an angle of about 0.3 degrees to about 0.7 degrees with the plane in the direction of the plane; and a compound semiconductor layer formed on the semiconductor substrate. The compound semiconductor layer is free of antiphase boundaries, and has a thickness between about 200 nm and about 1,000 nm.
Abstract:
Implementations described herein generally provide a method of processing a substrate. Specifically, the methods described are used for cleaning and etching source/drain regions on a silicon substrate in preparation for precise Group IV source/drain growth in semiconductor devices. Benefits of this disclosure include precise fin size control in devices, such as 10 nm FinFET devices, and increased overall device yield. The method of integrated clean and recess includes establishing a low pressure processing environment in the processing volume, and maintaining the low pressure processing environment while flowing a first gas over a substrate in a processing volume, depositing a salt on the substrate, heating the processing volume to greater than 90° C., purging the processing volume with a second inert gas, and recessing a source/drain region disposed on the substrate.
Abstract:
Embodiments disclosed herein generally relate to a system, method, and apparatus for controlling substrate outgassing such that hazardous gasses are eliminated from a surface of a substrate after a III-V epitaxial growth process or an etch clean process, and prior to additional processing. An oxygen containing gas is flowed to a substrate in a load lock chamber, and subsequently a non-reactive gas is flowed to the substrate in the load lock chamber. As such, hazardous gases and outgassing residuals are decreased and/or removed from the substrate such that further processing may be performed.
Abstract:
A processing chamber with a top, a bottom, and a sidewall coupled together to define an enclosure, a substrate support having a substrate supporting surface, an energy source coupled to the top or the bottom, and a gas injector liner disposed at the sidewall. The gas injector liner comprises a first plurality of gas outlets disposed at a first height, wherein one or more of the first plurality of gas outlets are oriented upwardly or downwardly, a second plurality of gas outlets disposed at a second height shorter than the first height, wherein one or more of the second plurality of gas outlets are oriented upwardly or downwardly, and a third plurality of gas outlets disposed at a third height shorter than the second height, wherein one or more of the third plurality of gas outlets are oriented upwardly or downwardly with respect to the substrate supporting surface.
Abstract:
Embodiments described herein generally relate to a method of fabrication of a device structure comprising Group III-V elements on a substrate. A surface may be formed on a substrate and a Group III-V material may be grown from the surface to form a Group III-V device structure in a trench isolated between a dielectric layer. A final critical dimension of the device structure may be trimmed to achieve a suitably sized node structure.
Abstract:
Implementations of the present disclosure generally relate to methods and apparatuses for epitaxial deposition on substrate surfaces. More particularly, implementations of the present disclosure generally relate to an integrated system for processing N-type metal-oxide semiconductor (NMOS) devices. In one implementation, a cluster tool for processing a substrate is provided. The cluster tool includes a pre-clean chamber, an etch chamber, one or more pass through chambers, one or more outgassing chambers, a first transfer chamber, a second transfer chamber, and one or more process chambers. The pre-clean chamber and the etch chamber are coupled to a first transfer chamber. The one or more pass through chambers are coupled to and disposed between the first transfer chamber and the second transfer chamber. The one or more outgassing chambers are coupled to the second transfer chamber. The one or more process chambers are coupled to the second transfer chamber.
Abstract:
The present disclosure generally relate to methods of processing a substrate in an epitaxy chamber. The method includes applying a passivating agent containing antimony to portions of a silicon substrate exposed through trenches formed in a dielectric layer on the silicon substrate, while applying the passivating agent containing antimony, exposing the silicon substrate to a group IV-containing precursor to form an epitaxial layer having a V-shaped structure having an exposed (111) plane at a bottom of the trenches, and forming a semiconductor layer on the epitaxial layer.
Abstract:
A method for forming a conformal group III/V layer on a silicon substrate and the resulting substrate with the group III/V layers formed thereon. The method includes removing the native oxide from the substrate, positioning a substrate within a processing chamber, heating the substrate to a first temperature, cooling the substrate to a second temperature, flowing a group III precursor into the processing chamber, maintaining the second temperature while flowing a group III precursor and a group V precursor into the processing chamber until a conformal layer is formed, heating the processing chamber to an annealing temperature, while stopping the flow of the group III precursor, and cooling the processing chamber to the second temperature. Deposition of the III/V layer may be made selective through the use of halide gas etching which preferentially etches dielectric regions.