Abstract:
A method of making an interposer in which at least two dielectric layers are bonded to each other to sandwich a plurality of conductors there-between. The conductors each electrically couple a respective pair of opposed electrical contacts which are formed within and protrude from openings which are also formed within the dielectric layers as part of this method. The resulting interposer is ideally suited for use as part of a test apparatus to interconnect highly dense patterns of solder ball contacts of a semiconductor chip to lesser dense arrays of contacts on the apparatus's printed circuit board.
Abstract:
An interposer including at least two dielectric layers bonded to each other, sandwiching a plurality of conductors there-between. The conductors each electrically couple a respective pair of opposed electrical contacts formed within and protruding from openings with the dielectric layers.
Abstract:
Methods of forming embedded, multilayer capacitors in printed circuit boards wherein copper or other electrically conductive channels are formed on a dielectric substrate. The channels may be preformed using etching or deposition techniques. A photoimageable dielectric is an upper surface of the laminate. Exposing and etching the photoimageable dielectric exposes the space between the copper traces. These spaces are then filled with a capacitor material. Finally, copper is either laminated or deposited atop the structure. This upper copper layer is then etched to provide electrical interconnections to the capacitor elements. Traces may be formed to a height to meet a plane defining the upper surface of the dielectric substrate or thin traces may be formed on the remaining dielectric surface and a secondary copper plating process is utilized to raise the height of the traces.
Abstract:
Methods of forming embedded, multilayer capacitors in printed circuit boards wherein copper or other electrically conductive channels are formed on a dielectric substrate. The channels may be preformed using etching or deposition techniques. A photoimageable dielectric is an upper surface of the laminate. Exposing and etching the photoimageable dielectric exposes the space between the copper traces. These spaces are then filled with a capacitor material. Finally, copper is either laminated or deposited atop the structure. This upper copper layer is then etched to provide electrical interconnections to the capacitor elements. Traces may be formed to a height to meet a plane defining the upper surface of the dielectric substrate or thin traces may be formed on the remaining dielectric surface and a secondary copper plating process is utilized to raise the height of the traces.
Abstract:
A method of making a circuitized substrate which includes at least one and possibly several capacitors as part thereof. In one embodiment, the substrate is produced by forming a layer of capacitive dielectric material on a dielectric layer and thereafter forming channels with the capacitive material, e.g., using a laser. The channels are then filled with conductive material, e.g., copper, using selected deposition techniques, e.g., sputtering, electro-less plating and electroplating. A second dielectric layer is then formed atop the capacitor and a capacitor “core” results. This “core” may then be combined with other dielectric and conductive layers to form a larger, multilayered PCB or chip carrier. In an alternative approach, the capacitive dielectric material may be photo-imageable, with the channels being formed using conventional exposure and development processing known in the art. In still another embodiment, at least two spaced-apart conductors may be formed within a metal layer deposited on a dielectric layer, these conductors defining a channel there-between. The capacitive dielectric material may then be deposited (e.g., using lamination) within the channels.
Abstract:
An electrical assembly which includes a circuitized substrate comprised of an organic dielectric material having a first electrically conductive pattern thereon. At least part of the dielectric layer and pattern form the first, base portion of an organic memory device, the remaining portion being a second, polymer layer formed over the part of the pattern and a second conductive circuit formed on the polymer layer. A second dielectric layer if formed over the second conductive circuit and first circuit pattern to enclose the organic memory device. The device is electrically coupled to a first electrical component through the second dielectric layer and this first electrical component is electrically coupled to a second electrical component. A method of making the electrical assembly is also provided, as is an information handling system adapted for using one or more such electrical assemblies as part thereof.
Abstract:
An optical coupler that provides for the direct mounting of integrated circuit(s). The coupler includes a two-part housing with grooves for accommodating optical fibers that are held in place when the two parts are put together. Circuitry is formed on the housing and solder balls, when heated to a liquid state and cooled (reflowed), are used to attach integrated circuit(s) onto the housing. At least one of these integrated circuit(s) is an optical die that is positioned in close proximity to the optical fibers to provide for the receipt and/or transmission of optical signals. The reflowing of the solder balls forms an electrical connection between the circuitry on the housing and the integrated circuit(s) and provides for alignment of these components. The housing is attached to a circuitized substrate using reflowed solder balls or wirebonds.
Abstract:
A solar recharge station is described having a contact area, a battery bank charge area and a solar panel array for maintaining the battery bank charged. The contact area includes electric contacts formed for engagement automatically by contacts on an electric powered vehicle as the vehicle enters the contact area. The battery bank is connected so that its energy is available for either recharging the vehicle or other use, and in case the vehicle needs a recharge but the battery banks lacks sufficient charge, ordinary house voltage is used.
Abstract:
A method of making a circuitized substrate (e.g., PCB) including at least one and possibly several internal optical pathways as part thereof such that the resulting substrate will be capable of transmitting and/or receiving both electrical and optical signals. The method involves forming at least one opening between a side of the optical core and an adjacent upstanding member such that the opening is defined by at least one angular sidewall. Light passing through the optical core material (or into the core from above) is reflected off this angular sidewall. The medium (e.g., air) within the opening thus also serves as a reflecting medium due to its own reflective index in comparison to that of the adjacent optical core material. The method utilizes many processes used in conventional PCB manufacturing, thereby keeping costs to a minimum. The formed substrate is capable of being both optically and electrically coupled to one or more other substrates possessing similar capabilities, thereby forming an electro-optical assembly of such substrates.
Abstract:
A circuitized substrate (e.g., PCB) including an internal optical pathway as part thereof such that the substrate is capable of transmitting and/or receiving both electrical and optical signals. The substrate includes an angular reflector on one of the cladding layers such that optical signals passing through the optical core will impinge on the angled reflecting surfaces of the angular reflector and be reflected up through an opening (including one with optically transparent material therein), e.g., to a second circuitized substrate also having at least one internal optical pathway as part thereof, to thus interconnect the two substrates optically. A method of making the substrate is also provided.