Abstract:
The present invention describes a rewiring plate for components with connection grids of between approx. 100 nm and 10 μm, which rewiring plate includes a base body and passages with carbon nanotubes, the lower end of the passages opening out into contact connection surfaces, and the carbon nanotubes forming an electrically conductive connection from the contact connection surfaces to the front surface of the base body.
Abstract:
A semiconductor component is fashioned of a chip carrier comprising an approximately planar chip carrier surface on which chip carrier surface a semiconductor chip with a pressure sensor is secured, and composed of electrode terminals penetrating the chip carrier and electrically connected to the semiconductor chip, with a surface-mounted arrangement. The chip overlapping the chip carrier.
Abstract:
A number of semiconductor chips each include a first main face and a second main face opposite from the first main face. The second main face includes at least one electrical contact element. The semiconductor chips are placed on a carrier. A material layer is applied into intermediate spaces between adjacent semiconductor chips. The carrier is removed and a first electrical contact layer is applied to the first main faces of the semiconductor chips so that the electrical contact layer is electrically connected with each one of the electrical contact elements.
Abstract:
A semiconductor device and manufacturing method. One embodiment provides a semiconductor chip. An encapsulating material covers the semiconductor chip. A metal layer is over the semiconductor chip and the encapsulating material. At least one of a voltage generating unit and a display unit are rigidly attached to at least one of the encapsulating material and the metal layer.
Abstract:
One or more embodiments relate to a method of forming a semiconductor structure, comprising: providing a workpiece; forming a barrier layer over the workpiece; forming a seed layer over the barrier layer; forming an inhibitor layer over the seed layer; removing a portion of said inhibitor layer to expose a portion of the seed layer; and selectively depositing a fill layer on the exposed seed layer.
Abstract:
A method of manufacturing a semiconductor structure. One embodiment produces a substrate having at least two semiconductor chips embedded in a molded body. A layer is applied over at least one main surface of the substrate by using a jet printing process.
Abstract:
Structures of a system on chip and methods of forming a system on chip are disclosed. In one embodiment, the system on a chip includes an RF component disposed on a first part of a substrate, a semiconductor component disposed on a second part of the substrate, the semiconductor component and the RF component sharing a common boundary. The system on chip further includes through substrate conductors disposed in the substrate, the through substrate conductors coupled to a ground potential node, the through substrate conductors disposed around the RF component forming a fence around the RF circuit.
Abstract:
One or more embodiments relate to a method of forming an electronic device, comprising: providing a workpiece; forming a first barrier layer over the workpiece; forming an intermediate conductive layer over the first barrier layer; forming a second barrier layer over the intermediate conductive layer; forming a seed layer over the second barrier layer; removing a portion of the seed layer to leave a remaining portion of the seed layer and to expose a portion of the second barrier layer; and electroplating a fill layer on the remaining portion of the seed layer.
Abstract:
A method for fabricating a device includes providing a substrate including at least one contact and applying a dielectric layer over the substrate. The method includes applying a first seed layer over the dielectric layer, applying an inert layer over the seed layer, and structuring the inert layer, the first seed layer, and the dielectric layer to expose at least a portion of the contact. The method includes applying a second seed layer over exposed portions of the structured dielectric layer and the contact such that the second seed layer makes electrical contact with the structured first seed layer. The method includes electroplating a metal on the second seed layer.