Abstract:
Disclosed is a User Equipment device configured to select a suitable acknowledgement timing configuration in a time division duplex-frequency division duplex (TDD-FDD) carrier aggregation (CA) enabled wireless network, comprising establishing, by a user equipment (UE), a connection to a primary serving cell (PCell) and a secondary serving cell (SCell) of a base station, the PCell having a first TDD or first FDD configuration, the SCell having a second FDD or second TDD configuration, receiving, by the UE, downlink data through the PCell and SCell, categorizing a type of downlink data subframe in use by the SCell, selecting, by the UE, a hybrid automatic repeat request (HARQ) timing configuration based on the type of downlink data subframe for use by the SCell, and transmitting acknowledgement information associated with the downlink data according to the selected hybrid automatic repeat request (HARQ) timing configuration on PCell. Other embodiments may be described and claimed.
Abstract:
Embodiments of a User Equipment (UE) to operate in accordance with a physical random access channel (PRACH) are disclosed herein. The UE may comprise hardware processing circuitry to determine a coverage enhancement category for the UE based on downlink channel statistics related to reception of downlink signals at the UE from an Evolved Node-B (eNB) and an uplink-downlink imbalance parameter related to uplink reception at the eNB. The hardware processing circuitry may be further to select, for use in a coverage enhancement mode, a PRACH preamble from a set of candidate PRACH preambles based on the determined coverage enhancement category for the UE. In some embodiments, at least some of the candidate PRACH preambles may span a different number of sub-frames.
Abstract:
Generally, this disclosure provides apparatus and methods for improved control channel monitoring in a New Carrier Type (NCT) wireless network. A User Equipment (UE) device may include a receiver circuit to receive a Multicast/Broadcast over Single Frequency Network (MBSFN) for Physical Multicast Channel (P-MCH) transmission from an evolved Node B (eNB); an MBSFN for P-MCH detection module to detect and extract an enhanced physical downlink control channel (EPDCCH) signal from the MBSFN subframe for P-MCH transmission; and an EPDCCH monitor module to decode and monitor the extracted EPDCCH signal.
Abstract:
Device-to-device (D2D) communications between user equipment (UE) allows two UEs in a long-term evolution (LTE) network to communicate directly with each other without the need to first send their communications to a network (such as via an evolved node B). In order to communicate in a D2D mode, the UEs first need to discover each other. One method of allowing the UEs to discover each other involves the use of a physical uplink control channel (PUCCH). After a network determines that certain UEs would benefit from D2D communication, the UEs can be set up to send and receive discovery signals using the PUCCH.
Abstract:
An eNodeB operable to perform Enhanced Interference Mitigation & Traffic Adaptation (eIMTA) is disclosed. The eNodeB can select a radio network temporary identifier (RNTI) that is used for eIMTA. The eNodeB can determine a periodicity for monitoring a physical downlink control channel (PDCCH) with the RNTI. The eNodeB can determine a set of subframes to monitor the PDCCH with the RNTI within the periodicity. The eNodeB can encode, for transmission to a user equipment (UE), the RNTI, the periodicity for monitoring the PDCCH with the RNTI, and the set of subframes to monitor the PDCCH with the RNTI.
Abstract:
Disclosed is a method of transmitting, from an enhanced Node B (eNB), an indication of an uplink/downlink (UL-DL) subframe configuration of a scheduling cell and a scheduled cell in a wireless time-division duplex (TDD) system. Embodiments include identifying the type of the UL-DL subframe configuration of the scheduling cell and determining a UL-DL subframe configuration to use for UL resource allocation of the scheduled cell. Other embodiments include identifying a reference UL-DL subframe configuration to use for UL resource allocation of the scheduled cell.
Abstract:
Technology for performing a Time Division Duplex (TDD) uplink-downlink (UL-DL) reconfiguration in a heterogeneous network (HetNet) is described. An evolved node B (eNB) may identify cluster metrics for a plurality of evolved node Bs (eNBs) in a cell cluster of the HetNet. The plurality of eNBs in the cell cluster may have a backhaul latency within a selected range. The eNB may select a TDD UL-DL configuration index for the plurality of eNBs in the cell cluster based in part on the cluster metrics. The eNB may transmit the TDD UL-DL configuration index to one or more user equipments (UEs) located within the cell cluster using a downlink control information (DCI) format. The TDD UL-DL configuration index may be transmitted on a Common Search Space (CSS) of a physical downlink control channel (PDCCH) on a UE-specific Primary Cell (PCell).
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for transmitting periodic channel state information having large payload sizes. Other embodiments may be described and claimed.
Abstract:
Technology is discussed for supporting the incorporation of a Primary Synchronization Signal (PSS) and/or a Secondary Synchronization Signal (SSS) within in a New Carrier Type (NCT) for a Component Carrier (CC). Guidelines for incorporating the PSS and/or the SSS in the NCT are discovered, together with potential collisions with other signals that can be avoided for various scenarios. In some examples, various guidelines and potential collisions discovered herein, for various scenarios, inform approaches to incorporating the PSS and/or the SSS based on the positioning of the PSS and/or the SSS. In other examples, other signals, such as DeModulation Reference Symbols (DMRS) are reconfigured to allow incorporation of the PSS and the SSS.
Abstract:
Disclosed is a method including communicating, by a mobile device, with a base station via first and second component carriers having different frequency bands and time division duplexing (TDD) configurations. The method may include receiving one or more downlink transmissions via the second component carrier. The method may include selecting a hybrid automatic repeat request (HARQ) timing sequence based on the TDD configurations of the first and second component carriers. The method may include transmitting one or more positive acknowledgment and/or negative acknowledgement (ACK/NACK) signals, associated with the one or more downlink transmissions, according to the selected HARQ timing sequence. Other embodiments may be described and claimed.