Abstract:
A method and a system for imaging an object, the system may include electron optics that may be configured to scan a first area of the object with at least one electron beam; wherein the electron optics may include a first electrode; and light optics that may be configured to illuminate at least one target of (a) the first electrode and (b) the object, thereby causing an emission of electrons between the first electrode and the object.
Abstract:
A method and a system for imaging an object, the system may include electron optics that may be configured to scan a first area of the object with at least one electron beam; wherein the electron optics may include a first electrode; and light optics that may be configured to illuminate at least one target of (a) the first electrode and (b) the object, thereby causing an emission of electrons between the first electrode and the object.
Abstract:
Embodiments of the invention relate to a mass resolving aperture that may be used in an ion implantation system that selectively exclude ion species based on charge to mass ratio (and/or mass to charge ratio) that are not desired for implantation, in an ion beam assembly. Embodiments of the invention relate to a mass resolving aperture that is segmented, adjustable, and/or presents a curved surface to the oncoming ion species that will strike the aperture. Embodiments of the invention also relate to the filtering of a flow of charged particles through a closed plasma channel (CPC) superconductor, or boson energy transmission system.
Abstract:
A particle beam detector is disclosed. The particle beam detector can include a particle beam receiving portion configured to convert particle beam energy to heat, and a plurality of temperature measuring devices disposed about the particle beam receiving portion. A location of a particle beam on the particle beam receiving portion can be determined by a temperature difference between at least two of the plurality of temperature measuring devices.
Abstract:
A method for assembling an electron exit window of an electron beam generating device comprises arranging a foil support plate on a housing of the electron beam generating device, bonding a window foil to a frame along at least one continuous bonding line, thus creating an exit window sub-assembly, and attaching the exit window sub-assembly onto the housing.
Abstract:
The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use write and inspection tools that share the same or substantially the same stage and the same or substantially the same designs for respective arrays of multiple charged particle beam columns, and that access the same design layout database to target and pattern or inspect features. By using design-matched charged particle beam tools, correlation of defectivity is preserved between inspection imaging and the design layout database. As a result, image-based defect identification and maskless design correction, of random and systematic errors, can be performed directly in the design layout database, enabling a fast yield ramp.
Abstract:
The invention relates to a collimator electrode, comprising an electrode body (81) that is provided with a central electrode aperture (82), wherein the electrode body defines an electrode height between two opposite main surfaces, and wherein the electrode body accommodates a cooling conduit (105) inside the electrode body for transferring a cooling liquid (102). The electrode body preferably has a disk shape or an oblate ring shape.The invention further relates to a collimator electrode stack for use in a charged particle beam generator, comprising a first collimator electrode and a second collimator electrode that are each provided with a cooling conduit (105) for transferring the cooling liquid (102), and a connecting conduit (110) for a liquid connection between the cooling conduits of the first and second collimator electrodes.
Abstract:
A charged particle beam apparatus is provided with: a charged particle beam column configured to irradiate a charged particle beam; and a controller configured to control the charged particle beam column to irradiate the charged particle beam at a first pixel interval for a first region and to irradiate the charged particle beam at a second pixel interval different from the first pixel interval for a second region included in the first region.
Abstract:
The invention relates to a collimator electrode stack (70), comprising: at least three collimator electrodes (71-80) for collimating a charged particle beam along an optical axis (A), wherein each collimator electrode comprises an electrode body with an electrode aperture for allowing passage to the charged particle beam, wherein the electrode bodies are spaced along an axial direction (Z) which is substantially parallel with the optical axis, and wherein the electrode apertures are coaxially aligned along the optical axis; and a plurality of spacing structures (89) provided between each pair of adjacent collimator electrodes and made of an electrically insulating material, for positioning the collimator electrodes at predetermined distances along the axial direction. Each of the collimator electrodes (71-80) is electrically connected to a separate voltage output (151-160).The invention further relates to a method of operating a charged particle beam generator.
Abstract:
A charged particle beam system for imaging and processing targets is disclosed, comprising a charged particle column, a secondary particle detector, and a secondary particle detection grid assembly between the target and detector. In one embodiment, the grid assembly comprises a multiplicity of grids, each with a separate bias voltage, wherein the electric field between the target and the grids may be adjusted using the grid voltages to optimize the spatial distribution of secondary particles reaching the detector. Since detector lifetime is determined by the total dose accumulated at the area on the detector receiving the largest dose, detector lifetime can be increased by making the dose into the detector more spatially uniform. A single resistive grid assembly with a radial voltage gradient may replace the separate grids. A multiplicity of deflector electrodes may be located between the target and grid to enhance shaping of the electric field.