摘要:
Nano-spherical group III-nitride materials and methods of forming nano-spherical group III-nitride materials are described. Also described is a 1-dimensional LED or similar device formed from a single nano-rod of a nano-spherical group III-nitride material.
摘要:
A method of depositing a high quality low defect single crystalline Group III-Nitride film. A patterned substrate having a plurality of features with inclined sidewalls separated by spaces is provided. A Group III-Nitride film is deposited by a hydride vapor phase epitaxy (HVPE) process over the patterned substrate. The HVPE deposition process forms a Group III-Nitride film having a first crystal orientation in the spaces between features and a second different crystal orientation on the inclined sidewalls. The first crystal orientation in the spaces subsequently overgrows the second crystal orientation on the sidewalls and in the process turns over and terminates treading dislocations formed in the first crystal orientation.
摘要:
Embodiments disclosed herein generally relate to an HVPE chamber. The chamber may have two separate precursor sources coupled thereto to permit two separate layers to be deposited. For example, a gallium source and a separate aluminum source may be coupled to the processing chamber to permit gallium nitride and aluminum nitride to be separately deposited onto a substrate in the same processing chamber. The nitrogen may be introduced to the processing chamber at a separate location from the gallium and the aluminum and at a lower temperature. The different temperatures causes the gases to mix together, react and deposit on the substrate with little or no deposition on the chamber walls.
摘要:
A method for in-situ cleaning of a deposition system is disclosed. The method includes providing a deposition system with portions of the deposition system deposited with at least a group III element or a compound of a group III element. Halogen containing fluid is introduced into the deposition system. The halogen containing fluid is permitted to react with the group III element to form a halide. The halide in solid state is converted to a gaseous state. The halide in gaseous state is purged out of the deposition system.
摘要:
Methods of epitaxy of gallium nitride, and other such related films, and light emitting diodes on patterned sapphire substrates, and other such related substrates, are described.
摘要:
Disclosed herein is an article comprising a substrate; an interlayer comprising aluminum nitride, gallium nitride, boron nitride, indium nitride or a solid solution of aluminum nitride, gallium nitride, boron nitride and/or indium nitride; the interlayer being directly disposed upon the substrate and in contact with the substrate; where the interlayer comprises a columnar film and/or nanorods and/or nanotubes; and a group-III nitride layer disposed upon the interlayer; where the group-III nitride layer completely covers a surface of the interlayer that is opposed to a surface in contact with the substrate; the group-III nitride layer being free from cracks.
摘要:
A layered article and method for forming the same includes a single crystal silicon substrate, a silicon oxynitride layer (SixNyOz) disposed on the silicon substrate, and a single crystal GaN layer disposed on the oxynitride layer. The silicon oxynitride layer can be formed by nitridation of a native oxide layer. One or more integrated electronic circuits and/or integrated optical or optoelectronic devices can be built on the article.
摘要:
One embodiment of fabricating a p-down light emitting diode (LED) structure comprises depositing a high crystal quality p type contact layer, depositing an active region on top of the p type contact layer, and depositing an n type contact layer on top of the active region using a hydride vapor phase epitaxy (HVPE) process. The high crystal quality p type contact layer is deposited at high temperature to ensure the high crystal quality of the p type film. The n type contact layer is formed on top of the active region in a HVPE chamber at a low temperature to prevent thermal damage to the quantum wells in the active region below the n type contact layer. The processing chamber used to form the p type contact layer is a separate processing chamber than the processing chamber used to form the n type contact layer.