Abstract:
The present invention provides improved gas injectors for use with CVD (chemical vapour deposition) systems that thermalize gases prior to injection into a CVD chamber. The provided injectors are configured to increase gas flow times through heated zones and include gas-conducting conduits that lengthen gas residency times in the heated zones. The provided injectors also have outlet ports sized, shaped, and arranged to inject gases in selected flow patterns. The invention also provides CVD systems using the provided thermalizing gas injectors. The present invention has particular application to high volume manufacturing of GaN substrates.
Abstract:
A system for epitaxial deposition of a Group III-V semiconductor material that includes gallium. The system includes sources of the reactants, one of which is a gaseous Group III precursor having one or more gaseous gallium precursors and another of which is a gaseous Group V component, a reaction chamber wherein the reactants combine to deposit Group III-V semiconductor material, and one or more heating structures for heating the gaseous Group III precursors prior to reacting to a temperature to decompose substantially all dimers, trimers or other molecular variations of such precursors into their monomer forms.
Abstract:
A method of fabricating a semiconductor structure includes the formation of a first bonding layer at least substantially comprised of a first III-V material on a major surface of a first element, and formation of a second bonding layer at least substantially comprised of a second III-V material on a major surface of a second element. The first bonding layer and the second bonding layer are disposed between the first element and the second element, and the first element and the second element are attached to one another at a bonding interface disposed between the first bonding layer and the second bonding layer. Semiconductor structures are fabricated using such methods.
Abstract:
Semiconductor structures include an active region between a plurality of layers of InGaN. The active region may be at least substantially comprised by InGaN. The plurality of layers of InGaN include at least one well layer comprising InwGa1−wN, and at least one barrier layer comprising InbGa1−bN proximate the at least one well layer. In some embodiments, the value of w in the InwGa1−wN of the well layer may be greater than or equal to about 0.10 and less than or equal to about 0.40 in some embodiments, and the value of b in the InbGa1−bN of the at least one barrier layer may be greater than or equal to about 0.01 and less than or equal to about 0.10. Methods of forming semiconductor structures include growing such layers of InGaN to form an active region of a light-emitting device, such as an LED. Luminary devices include such LEDs.
Abstract:
Semiconductor structures include an active region between a plurality of layers of InGaN. The active region may be at least substantially comprised by InGaN. The plurality of layers of InGaN include at least one well layer comprising InwGa1-wN, and at least one barrier layer comprising InbGa1-bN proximate the at least one well layer. In some embodiments, the value of w in the InwGa1-wN of the well layer may be greater than or equal to about 0.10 and less than or equal to about 0.40 in some embodiments, and the value of b in the InbGa1-bN of the at least one barrier layer may be greater than or equal to about 0.01 and less than or equal to about 0.10. Methods of forming semiconductor structures include growing such layers of InGaN to form an active region of a light emitting device, such as an LED. Luminary devices include such LEDs.
Abstract:
Dilute nitride III-V semiconductor materials may be formed by substituting As atoms for some N atoms within a previously formed nitride material to transform at least a portion of the previously formed nitride material into a dilute nitride III-V semiconductor material that includes arsenic. Such methods may be employed in the fabrication of photoactive devices, such as photovoltaic cells and photoemitters. The methods may be carried out within a deposition chamber, such as a metalorganic chemical vapor deposition (MOCVD) or a hydride vapor phase epitaxy (HVPE) chamber.
Abstract:
Semiconductor structures include an active region between a plurality of layers of InGaN. The active region may be at least substantially comprised by InGaN. The plurality of layers of InGaN include at least one well layer comprising InwGa1-wN, and at least one barrier layer comprising InbGa1-bN proximate the at least one well layer. In some embodiments, the value of w in the InwGa1-wN of the well layer may be greater than or equal to about 0.10 and less than or equal to about 0.40 in some embodiments, and the value of b in the InbGa1-bN of the at least one barrier layer may be greater than or equal to about 0.01 and less than or equal to about 0.10. Methods of forming semiconductor structures include growing such layers of InGaN to form an active region of a light emitting device, such as an LED. Luminary devices include such LEDs.
Abstract:
Embodiments relate to semiconductor structures and methods of forming semiconductor structures. The semiconductor structures include a substrate layer having a CTE that closely matches a CTE of one or more layers of semiconductor material formed over the substrate layer. In some embodiments, the substrate layers may comprise a composite substrate material including two or more elements. The substrate layers may comprise a metal material and/or a ceramic material in some embodiments.
Abstract:
Embodiments of the invention relate to methods of fabricating semiconductor structures, and to semiconductor structures fabricated by such methods. In some embodiments, the methods may be used to fabricate semiconductor structures of III-V materials, such as InGaN. A semiconductor layer is fabricated by growing sublayers using differing sets of growth conditions to improve the homogeneity of the resulting layer, to improve a surface roughness of the resulting layer, and/or to enable the layer to be grown to an increased thickness without the onset of strain relaxation.
Abstract:
The present disclosure relates to a method for manufacturing a multi-junction solar cell device comprising the steps of: providing a first substrate, providing a second substrate having a lower surface and an upper surface, forming at least one first solar cell layer on the first substrate to obtain a first wafer structure, forming at least one second solar cell layer on the upper surface of the second substrate to obtain a second wafer structure, and bonding the first wafer structure to the second wafer structure, wherein the at least one first solar cell layer is bonded to the lower surface of the second substrate and removing the first substrate.