Abstract:
A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
Abstract:
A method of fabricating a heterostructure device, including (a) obtaining a first layer or substrate; (b) growing a second layer on the first layer or substrate; and (c) forming the second layer that is at least partially relaxed wherein (1) the first layer and the second layer have the same lattice structure but different lattice constants, (2) the first layer and the second layer form a heterojunction, and (3) the heterojunction forms an active area of a device or serves as a pseudo-substrate for the device.
Abstract:
A method of fabricating a Light Emitting Diode with improved light extraction efficiency, comprising depositing a plurality of Zinc Oxide (ZnO) nanorods on one or more surfaces of a III-Nitride based LED, by growing the ZnO nanorods from an aqueous solution, wherein the surfaces are different from c-plane surfaces of III-Nitride and transmit light generated by the LED.
Abstract:
Grow gallium-containing semi-conductor layers are grown on a substrate, wherein the gallium-containing semiconductor layers comprise AlxGayInzNvPwAsu, where 0≤x≤1, 0≤y≤1, 0≤z≤1, 0≤v≤1, 0≤w≤1, 0≤u≤1, v+w+u=1, and x+y+z=1. Dry etching of the gallium-containing semiconductor layers exposes sidewalls of the layers. Surface treatments are performed to recover from damage to the sidewalls resulting from the dry etching. Dielectric materials are deposited on the sidewalls, for example, by atomic layer deposition (ALD), to passivate the sidewalls. The resulting gallium-containing semiconductor layers have an improvement in optical efficiency as compared to gallium-containing semiconductor layers that are not subjected to the surface treatments and the deposition of the dielectric materials.
Abstract:
A method to fabricate micro-size III-nitride light emitting diodes (μLEDs) with an epitaxial tunnel junction comprised of a p+GaN layer, an InxAlyGazN insertion layer, and an n+GaN layer, grown using metalorganic chemical vapor deposition (MOCVD), wherein the μLEDs have a low forward the GaN layers, which reduces a depletion width of the tunnel junction and increases the tunneling probability. The μLEDs are fabricated with dimensions that vary from 25 to 10,000 μm2. It was found that the InxAlyGazN insertion layer can reduce the forward voltage at 20 A/cm2 by at least 0.6 V. The tunnel junction μLEDs with an n-type and p-type InxAlyGazN insertion layer had a low forward voltage at 20 A/cm2 that was very stable. At dimensions smaller than 1600 μm2, the low forward voltage is less than 3.2 V.
Abstract:
Gallium-containing semiconductor layers are grown on a substrate, followed by dry etching of the gallium-containing semiconductor layers during fabrication of a device. After the dry etching, surface treatments are performed to remove damage from the sidewalls of the device. After the surface treatments, dielectric materials are deposited on the sidewalls of the device to passivate the sidewalls of the device. These steps result in an improvement in forward current-voltage characteristics and reduction in leakage current of the device, as well as an enhancement of light output power and efficiency of the device.
Abstract:
An optoelectronic device grown on a miscut of GaN, wherein the miscut comprises a semi-polar GaN crystal plane (of the GaN) miscut x degrees from an m-plane of the GaN and in a c-direction of the GaN, where −15
Abstract:
A III-nitride tunnel junction with a modified p-n interface, wherein the modified p-n interface includes a delta-doped layer to reduce tunneling resistance. The delta-doped layer may be doped using donor atoms comprised of Oxygen (O), Germanium (Ge) or Silicon (Si); acceptor atoms comprised of Magnesium (Mg) or Zinc (Zn); or impurities comprised of Iron (Fe) or Carbon (C).
Abstract:
A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
Abstract:
A method for fabricating a composite useful in a white light emitting device, includes mixing a phosphor and a filler to form a mixture; sintering the mixture (e.g., using spark plasma sintering) to form a composite; and annealing the composite to reduce oxygen vacancies and improve optical properties of the composite. Also disclosed is a white light emitting device including a laser diode or light emitting diode optically pumping the phosphor in the composite to produce white light. The composite fabricated using the method (and having. e.g., at most 50% phosphor by weight) can (1) reduce an operating temperature of the phosphor by 55 degrees, (2) increase an external quantum efficiency (e.g., by at least 15%) of the white light emitting device, and (3) result in color points and quality of the white light that is equal to or improved, as compared to without the filler.