Abstract:
Trenched vertical power field-effect transistors with improved on-resistance and/or breakdown voltage are fabricated. In one or more embodiments, the modulation of the current flow of the transistor occurs in the lateral channel, whereas the voltage is predominantly held in the vertical direction in the off-state. When the device is in the on-state, the current is channeled through an aperture in a current-blocking region after it flows under a gate region into the drift region. In another embodiment, a novel vertical power low-loss semiconductor multi-junction device in III-nitride and non-III-nitride material system is provided. One or more multi-junction device embodiments aim at providing enhancement mode (normally-off) operation alongside ultra-low on resistance and high breakdown voltage.
Abstract:
A method of fabricating a III-nitride semiconductor device, including growing an III-nitride semiconductor and an oxide sequentially to form an oxide/III-nitride interface, without exposure to air in between growth of the oxide and growth of the III-nitride semiconductor.
Abstract:
A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
Abstract:
A method of fabricating a III-nitride semiconductor device, including growing an III-nitride semiconductor and an oxide sequentially to form an oxide/III-nitride interface, without exposure to air in between growth of the oxide and growth of the III-nitride semiconductor.
Abstract:
The present invention discloses a plurality of interdigitated pixels arranged in an array, having a very low series-resistance with improved current spreading and improved heat-sinking. Each pixel is a square with sides of dimension l. The series resistance is minimized by increasing the perimeter of an active region for the pixels. The series resistance is also minimized by shrinking the space between a mesa and n-contact for each pixel.
Abstract:
The present invention discloses a plurality of interdigitated pixels arranged in an array, having a very low series-resistances with improved current spreading and improved heat-sinking. Each pixel is a square with sides of dimension l. The series resistance is minimized by increasing the perimeter of an active region for the pixels. The series resistance is also minimized by shrinking the space between a mesa and n-contact for each pixel.
Abstract:
Methods of controlling stress in GaN films deposited on silicon and silicon carbide substrates and the films produced therefrom are disclosed. A typical method comprises providing a substrate and depositing a graded gallium nitride layer on the substrate having a varying composition of a substantially continuous grade from an initial composition to a final composition formed from a supply of at least one precursor in a growth chamber without any interruption in the supply. A typical semiconductor film comprises a substrate and a graded gallium nitride layer deposited on the substrate having a varying composition of a substantially continuous grade from an initial composition to a final composition formed from a supply of at least one precursor in a growth chamber without any interruption in the supply.
Abstract:
The present invention discloses a plurality of interdigitated pixels arranged in an array, having a very low series-resistances with improved current spreading and improved heat-sinking Each pixel is a square with sides of dimension 1. The series resistance is minimized by increasing the perimeter of an active region for the pixels. The series resistance is also minimized by shrinking the space between a mesa and n-contact for each pixel.
Abstract:
The disclosure describes the use of strain to enhance the properties of p- and n-materials so as to improve the performance of III-N electronic and optoelectronic devices. In one example, transistor devices include a channel aligned along uniaxially strained or relaxed directions of the III-nitride material in the channel. Strain is introduced using buffer layers or source and drain regions of different composition
Abstract:
Described herein are III-N (e.g. GaN) devices having a stepped cap layer over the channel of the device, for which the III-N material is orientated in an N-polar orientation.