摘要:
An optical emitter includes a Light-Emitting Diode (LED) on a package wafer, transparent insulators, and one or more transparent electrical connectors between the LED die and one or more contact pads on the packaging wafer. The transparent insulators are deposited on the package wafer with LED dies attached using a lithography or a screen printing method. The transparent electrical connectors are deposited using physical vapor deposition, chemical vapor deposition, spin coating, spray coating, or screen printing and may be patterned using a lithography process and etching.
摘要:
The present disclosure involves an illumination apparatus. The illumination apparatus includes an n-doped semiconductor compound layer, a p-doped semiconductor compound layer spaced apart from the n-doped semiconductor compound layer, and a multiple-quantum-well (MQW) disposed between the first semiconductor compound layer and the second semiconductor compound layer. The MQW includes a plurality of alternating first and second layers. The first layers of the MQW have substantially uniform thicknesses. The second layers have graded thicknesses with respect to distances from the p-doped semiconductor compound layer. A subset of the second layers located most adjacent to the p-doped semiconductor compound layer is doped with a p-type dopant. The doped second layers have graded doping concentration levels that vary with respect to distances from the p-doped semiconductor layer.
摘要:
A light-emitting diode (LED) device is provided. The LED device has raised semiconductor regions formed on a substrate. LED structures are formed over the raised semiconductor regions such that bottom contact layers and active layers of the LED device are conformal layers. The top contact layer has a planar surface. In an embodiment, the top contact layers are continuous over a plurality of the raised semiconductor regions while the bottom contact layers and the active layers are discontinuous between adjacent raised semiconductor regions.
摘要:
A seed layer for growing a group 111-V semiconductor structure 1s embedded in a dielectric material on a carrier substrate. After the group 111-V semiconductor structure is grown, the dielectric material is removed by wet etch to detach the carrier substrate. The group 111-V semiconductor structure includes a thick gallium nitride layer of at least 100 microns or a light-emitting structure.
摘要:
An optical emitter includes a Light-Emitting Diode (LED) on a package wafer, transparent insulators, and one or more transparent electrical connectors between the LED die and one or more contact pads on the packaging wafer. The transparent insulators are deposited on the package wafer with LED dies attached using a lithography or a screen printing method. The transparent electrical connectors are deposited using physical vapor deposition, chemical vapor deposition, spin coating, spray coating, or screen printing and may be patterned using a lithography process and etching.
摘要:
A photonic device generates light from a full spectrum of lights including white light. The device includes two or more LEDs grown on a substrate, each generating light of a different wavelength and separately controlled. A light-emitting structure is formed on the substrate and apportioned into the two or more LEDs by etching to separate the light-emitting structure into different portions. At least one of the LEDs is coated with a phosphor material so that different wavelengths of light are generated by the LEDs while the same wavelength of light is emitted from the light-emitting structure.
摘要:
An LED array comprises a growth substrate and at least two separated LED dies grown over the growth substrate. Each of LED dies sequentially comprise a first conductive type doped layer, a multiple quantum well layer and a second conductive type doped layer. The LED array is bonded to a carrier substrate. Each of separated LED dies on the LED array is simultaneously bonded to the carrier substrate. The second conductive type doped layer of each of separated LED dies is proximate to the carrier substrate. The first conductive type doped layer of each of LED dies is exposed. A patterned isolation layer is formed over each of LED dies and the carrier substrate. Conductive interconnects are formed over the patterned isolation layer to electrically connect the at least separated LED dies and each of LED dies to the carrier substrate.
摘要:
A light emitting diode (LED) structure comprises a first dopant region, a dielectric layer on top of the first dopant region, a bond pad layer on top of a first portion the dielectric layer, and an LED layer having a first LED region and a second LED region. The bond pad layer is electrically connected to the first dopant region. The first LED region is electrically connected to the bond pad layer.
摘要:
The present disclosure involves a lighting apparatus. The lighting apparatus includes a thermally-conductive substrate. The thermally-conductive substrate may include a substrate. The lighting apparatus also includes a printed circuit board (PCB). The PCB is located besides the thermally-conductive substrate. The PCB and the thermally-conductive substrate have different material compositions. The lighting apparatus also includes a photonic device located over the thermally-conductive substrate. The photonic device may include a light-emitting diode (LED) die. The photonic device is thermally coupled to the thermally-conductive substrate. The photonic device is electrically coupled to the printed circuit board. The lighting apparatus also includes a thermal dissipation structure. The thermal dissipation structure is thermally coupled to the thermally-conductive substrate.
摘要:
A package system includes a substrate having at least one first thermally conductive structure through the substrate. At least one second thermally conductive structure is disposed over the at least one first thermally conductive structure. At least one light-emitting diode (LED) is disposed over the at least one second thermally conductive structure.