Abstract:
A vehicle has a security and anti-theft system that senses movement of the vehicle in a forward or backward direction when the vehicle is in a locked state, such as by detecting wheel rotation. Upon this detection, the security system signals the motor to counteract the wheel movement by rotating one or more wheels in the opposite direction of the direction of wheel rotation detected until the wheel rotation is no longer detected. The security and anti-theft system may determine whether the vehicle is in a locked state by detecting whether a key is present and/or by one or more communications received by an external wireless device.
Abstract:
Electrically powered vehicles may be equipped with both mechanical braking systems and regenerative braking systems. Regenerative braking systems improve vehicle efficiency by returning a portion of the energy lost in deceleration to the battery of the electrically powered vehicle. An electrically powered vehicle controller that provides collision avoidance functionality can maximize the energy returned to the battery of the electrically powered vehicle by maximizing the use of regenerative braking for collision avoidance. A first braking mode can include only regenerative braking for objects greater than the minimum regenerative stopping distance. A second braking mode can include composite braking using both mechanical and regenerative braking. The electrically powered vehicle controller determines the maximum regenerative braking level at least based on data provided battery charge level or battery state sensors.
Abstract:
A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). To charge, the machines employ electrical current from an external source, such as the electrical grid or an electrical service of an installation location. The charging and distribution machines may distribute portable electrical energy storage devices of particular performance characteristics and other attributes based on customer preferences and/or customer profiles. The charging and distribution machines may provide instructions to or otherwise program portable electrical energy storage devices stored within the charging and distribution machines to perform at various levels according to user preferences and user profiles.
Abstract:
A collection, charging and distribution machine collects, charges and distributes portable electrical energy storage devices (e.g., batteries, super- or ultracapacitors). To charge, the machine employs electrical current from an external source, such as the electrical grid or an electrical service of an installation location. The machine determines a first number of devices to be rapidly charged, employing charge from a second number of devices identified to sacrifice charge. Thus, some devices may be concurrently charged via current from the electrical service and current from other devices, to achieve rapid charging of some subset of devices. The devices that sacrifice charge may later be charged. Such may ensure availability of devices for end users.
Abstract:
A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). To charge, the machines employ electrical current from an external source, such as the electrical grid or an electrical service of an installation location. By default, each portable electrical energy storage device is disabled from accepting a charge unless it receives authentication information from an authorized collection, charging and distribution machine, other authorized charging device, or other authorized device that transmits the authentication credentials. Also, by default, each portable electrical energy storage device is disabled from releasing energy unless it receives authentication information from an external device to which it will provide power, such as a vehicle or other authorization device.
Abstract:
Electrical energy storage device for powering portable devices such as vehicles or consumer electronics includes barriers to minimize migration of thermal energy and propagation of combustion in the rare event that electrical energy storage cells fail, burst and ignite. A burst structure is provided to vent gas from the device in a desired direction in the event pressure within the device exceeds a maximum value. Biased vents permit gases emanating from a portable electrical energy storage cell within an electrical energy storage module to escape and isolate other electrical energy storage cells from the gases.
Abstract:
A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). Availability of charged portable electrical energy storage devices available at a collection, charging and distribution machine are communicated to or acquired by a mobile device of a user or a user's vehicle. Once the mobile device of a user or a user's vehicle comes within close proximity of the collection, charging and distribution machine or within a particular area surrounding the collection, charging and distribution machine, the collection, charging and distribution machine or a collection, charging and distribution machine management system communicates an alert (e.g., over a cellular network, short range wireless signal or wireless fidelity (Wi-Fi) network) to the mobile device or vehicle indicating how many portable electrical energy storage devices are available at the distribution machine.
Abstract:
Systems and methods are provided for detecting that an electric motor drive vehicle (e.g., an electric scooter or motorbike) is idling based on one or more of sensed parameters indicative of the idling state. These sensed parameters may include one or more of, alone or in any combination, a sensed throttle position, at least one sensed electrical characteristic of a traction electric motor, a power converter, or an electrical storage device of the vehicle, and a sensed rate of rotation of a drive shaft of the traction electric motor or of a wheel drivably coupled to the traction electric motor. Upon detecting that the vehicle is in an idling state, a controller of the vehicle enters into a standby mode. In the standby mode, a relatively small amount of electrical power is supplied to the traction electric motor to cause a vibration of the motor to alert a driver that the vehicle is ON in the standby mode and is ready to be driven. Additionally, an audible and/or visual indication may be issued in the standby mode to further alert the driver that the vehicle is ON and ready to be driven.
Abstract:
A vehicle has a security and anti-theft system that senses movement of the vehicle in a forward or backward direction when the vehicle is in a locked state, such as by detecting wheel rotation. Upon this detection, the security system signals the motor to counteract the wheel movement by rotating one or more wheels in the opposite direction of the direction of wheel rotation detected until the wheel rotation is no longer detected. The security and anti-theft system may determine whether the vehicle is in a locked state by detecting whether a key is present and/or by one or more communications received by an external wireless device.
Abstract:
A collection, charging and distribution machine collects, charges and distributes portable electrical energy storage devices (e.g., batteries, super- or ultracapacitors). To charge, the machine employs electrical current from an external source, such as the electrical grid or an electrical service of an installation location. The machine determines a first number of devices to be rapidly charged, employing charge from a second number of devices identified to sacrifice charge. Thus, some devices may be concurrently charged via current from the electrical service and current from other devices, to achieve rapid charging of some subset of devices. The devices that sacrifice charge may later be charged. Such may ensure availability of devices for end users.