摘要:
The present invention relates to poly(arylene ethers) used as low k dielectric layers in electronic applications and articles containing such poly(arylene ethers) comprising the structure: wherein n=5 to 10000 and monovalent Ar1 and divalent Ar2 are selected from a group of heteroaromatic compounds that incorporate O, N, Se, S, or Te or combinations of the aforesaid elements, including but not limited to:
摘要:
A new apparatus is provided that can be applied to clean outer edges of semiconductor substrates. Under the first embodiment of the invention, a brush is mounted on the surface of the substrate around the periphery of the substrate, chemicals are fed to the surface that is being cleaned by means of a hollow core on which the cleaning brush is mounted. The surface that is being cleaned rotates at a relatively high speed thereby causing the chemicals that are deposited on this surface (by the brush) to remain in the edge of the surface. Under the second embodiment of the invention, a porous roller is mounted between a chemical reservoir and the surface that is being cleaned, the surface that is being cleaned rotates at a relatively high speed. The chemicals that are deposited by the interfacing porous roller onto the surface that is being cleaned therefore remain at the edge of this surface thereby causing optimum cleaning action of the edge of the surface. After contaminants have been removed in this manner from the surface, the surface can be further cleaned by applying DI water.
摘要:
A method of bonding a wire to a metal bonding pad, comprising the following steps. A semiconductor die structure having an exposed metal bonding pad within a chamber is provided. The bonding pad has an upper surface. A hydrogen-plasma is produced within the chamber from a plasma source. The metal bonding pad is pre-cleaned and passivated with the hydrogen-plasma to remove any metal oxide formed on the metal bonding pad upper surface. A wire is then bonded to the passivated metal bonding pad.
摘要:
A method for cleaning a semiconductor structure using vapor phase condensation with a thermally vaporized cleaning agent, a hydrocarbon vaporized by pressure variation, or a combination of the two. In the thermally vaporized cleaning agent process, a semiconductor structure is lowered into a vapor blanket in a thermal gradient cleaning chamber at atmospheric pressure formed by heating a liquid cleaning agent below the vapor blanket and cooling the liquid cleaning agent above the vapor blanket causing it to condense and return to the bottom of the thermal gradient cleaning chamber. The semiconductor structure is then raised above the vapor blanket and the cleaning agent condenses on all of the surfaces of the semiconductor structure removing contaminants and is returned to the bottom of the chamber by gravity. In the pressurized hydrocarbon process, a semiconductor structure is placed into a variable pressure cleaning chamber, having a piston which changes the pressure by reducing or increasing the volume of the chamber. The semiconductor structure first exposed to the hydrocarbon in vapor phase, then the piston is lowered to condense the hydrocarbon. A semiconductor structure can be cleaned by either or both of these processes by repetitive vaporization/condensation cycles.
摘要:
A process for fabricating vertical CMOS devices, featuring variable channel lengths, has been developed. Channel region openings are defined in composite insulator stacks, with the channel length of specific devices determined by the thickness of the composite insulator stack. Selective removal of specific components of the composite insulator stack, in a specific region, allows the depth of the channel openings to be varied. A subsequent epitaxial silicon growth procedure fills the variable depth channel openings, providing the variable length, channel regions for the vertical CMOS devices.
摘要:
A new method of forming a sharp tip on a floating gate in the fabrication of a EEPROM memory cell is described. A first gate dielectric layer is provided on a substrate. A second gate dielectric layer is deposited overlying the first gate dielectric layer. A floating gate/control gate stack is formed overlying the second gate dielectric layer. One sidewall portion of the floating gate is covered with a mask. The second gate dielectric layer not covered by the mask is etched away whereby an undercut of the floating gate is formed in the second gate dielectric layer. The mask is removed. Polysilicon spacers are formed on sidewalls of the floating gate wherein one of the polysilicon spacers fills the undercut thereby forming a sharp polysilicon tip to improve the erase efficiency of the memory cell.
摘要:
A method of preventing metal penetration and diffusion from metal structures formed over a semiconductor structure, comprising the following steps. A semiconductor structure including a patterned dielectric layer is provided. The patterned dielectric layer includes an opening and an upper surface. The dielectric layer surface is then passivated to form a passivation layer. A metal plug is formed within the dielectric layer opening. The passivation layer prevents penetration and diffusion of metal out from the metal plug into the semiconductor structure and the patterned dielectric layer.
摘要:
An endpoint detection system for copper stripping using a colorimetric analysis of the change in concentration of a component is described. Wet copper stripping chemicals are used to strip copper from a wafer whereby an eluent is produced. The eluent is continuously analyzed by colorimetric analysis for the presence of copper. The copper stripping process is stopped when the presence of copper is no longer detected. Also novel compounds or chemicals for use in an endpoint detection system for copper stripping using a colorimetric analysis of the change in concentration of the novel compounds or chemicals are described. A composition of matter that serves as an indicator of the presence of copper by colorimetric analysis comprises: 1) Fast Sulphon Black F indicator and an ammonium ion-containing solution or 2) a complexing agent, comprising a diamine, an amine macrocycle, or a monoamine.
摘要:
A method for forming a thermally stable cobalt disilicide film in the fabrication of an integrated circuit is described. A semiconductor substrate is provided having silicon regions to be silicided. A cobalt layer is deposited overlying the silicon regions to be silicided. A capping layer is deposited overlying the cobalt layer. The substrate is subjected to a first rapid thermal anneal whereby the cobalt is transformed to cobalt monosilicide where it overlies the silicon regions and wherein the cobalt not overlying the silicon regions is unreacted. The unreacted cobalt layer and the capping layer are removed. A titanium layer is deposited overlying the cobalt monosilicide layer. Thereafter the substrate is subjected to a second rapid thermal anneal whereby the cobalt monosilicide is transformed to cobalt disilicide. The titanium layer provides titanium atoms which diffuse into the cobalt disilicide thereby increasing its thermal stability. The titanium layer is removed to complete formation of a thermally stable cobalt disilicide film in the manufacture of an integrated circuit.
摘要:
A method of fabricating a semiconductor wafer having at least one integrated circuit, the method comprising the following steps. A semiconductor wafer structure having at least an upper and a lower dielectric layer is provided. The semiconductor wafer structure having a bonding pad area and an interconnect area. At least one active interconnect having a first width is formed in the interconnect area, through the dielectric layers. A plurality of adjacent dummy plugs each having a second width is formed in the bonding pad area, through a portion of the dielectric layers. The semiconductor wafer structure is patterned and etched to form trenches through the upper dielectric layer. The trenches surround each of the at least one active interconnect and the dummy plugs whereby the upper dielectric level between the adjacent dummy plugs is removed. A metallization layer is deposited over the lower dielectric layer, filling the trenches at least to the upper surface of the remaining upper dielectric layer. The metallization layer is planarized to remove the excess of the metallization layer forming a continuous bonding pad within the bonding pad area and including the plurality of adjacent dummy plugs, thus forming at least one damascene structure including the at least one respective active interconnect.