Abstract:
A hardware cell and method for performing a digital XNOR of an input signal and weights are described. The hardware cell includes input lines, a plurality of pairs of magnetic junctions, output transistors and at least one selection transistor coupled with the output transistors. The input lines receive the input signal and its complement. The magnetic junctions store the weight. Each magnetic junction includes a reference layer, a free layer and a nonmagnetic spacer layer between the reference layer and the free layer. The free layer has stable magnetic states and is programmable using spin-transfer torque and/or spin-orbit interaction torque. The first magnetic junction of a pair receives the input signal. The second magnetic junction of the pair receives the input signal complement. The output transistors are coupled with the magnetic junctions such that each pair of magnetic junctions forms a voltage divider. The output transistors form a sense amplifier.
Abstract:
A method for providing a semiconductor device and the device so formed are described. A doped semiconductor layer is deposited on a semiconductor underlayer. At least a portion of the semiconductor underlayer is exposed. A dopant for the doped semiconductor layer is selected from a p-type dopant and an n-type dopant. An ultraviolet-assisted low temperature (UVLT) anneal of the doped semiconductor layer is performed in an ambient. The ambient is selected from an oxidizing ambient and a nitriding ambient. The oxidizing ambient is used for the n-type dopant. The nitriding ambient is used for the p-type dopant. A sacrificial layer is formed by the doped semiconductor layer during the UVLT anneal. The dopant is driven into the portion of the semiconductor underlayer from the doped semiconductor layer by the UVLT anneal, thereby forming a doped semiconductor underlayer. The sacrificial layer is then removed.
Abstract:
A method provides a gate structure for a plurality of components of a semiconductor device. A silicate layer is provided. In one aspect, the silicate layer is provided on a channel of a CMOS device. A high dielectric constant layer is provided on the silicate layer. The method also includes providing a work function metal layer on the high dielectric constant layer. A low temperature anneal is performed after the high dielectric constant layer is provided. A contact metal layer is provided on the work function metal layer.
Abstract:
A field effect transistor includes a fin having a stack of nanowire-like channel regions including at least first and a second nanowire-like channel regions, source and drain electrodes on opposite sides of the fin, a dielectric separation region including a dielectric material between the first and second nanowire-like channel regions, and a gate stack extending along a pair of sidewalls of the stack of nanowire-like channel regions. The dielectric separation region extending completely from a surface of the second nanowire-like channel region facing the first nanowire-like channel region to a surface of the first nanowire-like channel region facing the second nanowire-like channel region. The gate stack includes a gate dielectric layer and a metal layer on the gate dielectric layer. The metal layer of the gate stack does not extend between the first and second nanowire-like channel regions.
Abstract:
A neuromorphic device for the analog computation of a linear combination of input signals, for use, for example, in an artificial neuron. The neuromorphic device provides non-volatile programming of the weights, and fast evaluation and programming, and is suitable for fabrication at high density as part of a plurality of neuromorphic devices. The neuromorphic device is implemented as a vertical stack of flash-like cells with a common control gate contact and individually contacted source-drain (SD) regions. The vertical stacking of the cells enables efficient use of layout resources.
Abstract:
A stack for a semiconductor device and a method for making the stack are disclosed. The stack includes a plurality of sacrificial layers in which each sacrificial layer has a first lattice parameter; and at least one channel layer that has a second lattice parameter in which the first lattice parameter is less than or equal to the second lattice parameter, and each channel layer is disposed between and in contact with two sacrificial layers and includes a compressive strain or a neutral strain based on a difference between the first lattice parameter and the second lattice parameter.
Abstract:
A semiconductor device includes a series of metal routing layers and a complementary pair of planar field-effect transistors (FETs) on an upper metal routing layer of the metal routing layers. The upper metal routing layer is M3 or higher. Each of the FETs includes a channel region of a crystalline material. The crystalline material may include one or more transition metal dichalcogenide materials such as MoS2, WS2, WSe2, and/or combinations thereof.
Abstract:
Methods of forming a finFET are provided. The methods may include forming a fin-shaped channel region including indium (In) on a substrate, forming a deep source/drain region adjacent to the channel region on the substrate and forming a source/drain extension region between the channel region and the deep source/drain region. Opposing sidewalls of the source/drain extension region may contact the channel region and the deep source/drain region, respectively, and the source/drain extension region may include InyGa1−yAs, and y is in a range of about 0.3 to about 0.5.
Abstract translation:提供了形成finFET的方法。 所述方法可以包括在衬底上形成包括铟(In)的鳍状沟道区域,形成与衬底上的沟道区相邻的深源极/漏极区域,并在沟道区域和深度之间形成源极/漏极延伸区域 源/漏区。 源极/漏极延伸区域的相对侧壁可以分别接触沟道区域和深源极/漏极区域,并且源极/漏极延伸区域可以包括In y Ga 1-y As,y在约0.3至约0.5的范围内。
Abstract:
Exemplary embodiments provide for fabricating a nanosheet stack structure having one or more sub-stacks. Aspects of the exemplary embodiments include: growing an epitaxial crystalline initial stack of one or more sub-stacks, each of the sub-stacks having at least three layers, a sacrificial layer A, and at least two different non-sacrificial layers B and C having different material properties, wherein the non-sacrificial layers B and C layers are kept below a thermodynamic or kinetic critical thickness corresponding to metastability during all processing, and wherein the sacrificial layer An is placed only at a top or a bottom of each of the sub-stacks, and each of the sub-stacks is connected to an adjacent sub-stack at the top or the bottom using one of the sacrificial layers A; proceeding with fabrication flow of nanosheet devices, such that pillar structures are formed at each end of the epitaxial crystalline stack that to hold the nanosheets in place after selective etch of the sacrificial layers; and selectively removing sacrificial layers A to all non-sacrificial layers B and C, while the remaining layers in the stack are held in place by the pillar structures so that after removal of the sacrificial layers An, each of the sub-stacks contains the non-sacrificial layers B and C.
Abstract:
A logic device is provided which includes an electron monochromator. The electron monochromator includes a quantum dot disposed between first and second tunneling barriers, an emitter coupled to the first tunneling barrier, and a collector coupled to the second tunneling barrier. The logic device also includes a quantum interference device. The quantum interference device includes a source which is coupled to the collector of the electron monochromator.