Abstract:
Provided are a method and an apparatus for repairing a memory cell in a memory test system. A test device detects a fail address by testing a memory device according to a test command, and temporarily stores the fail address in a fail address memory (FAM). The fail address is transmitted to the memory device according to a fail address transmission mode, is temporarily stored in a temporary fail address storage of the memory device, and is then stored in an anti-fuse array, which is a non-volatile storage device. To secure the reliability of data, stored data can be read to verify the data and a verification result can be transmitted in series or in parallel to the test device.
Abstract:
Provided are a semiconductor device and a method for fabricating the same. The semiconductor device includes a lower fin that protrudes from a substrate and extends in a first direction, an oxide film the lower fin, an upper fin that protrudes from the oxide film and that is spaced apart from the lower fin at a position corresponding to the lower fin, and a gate structure the upper fin that extends in a second direction to intersect the upper fin, wherein germanium (Ge) is included in a portion of the oxide film located between the lower fin and the upper fin.
Abstract:
A memory device includes a storage circuit, a first driving circuit, and a second driving circuit. The storage circuit stores first data and compares the first data and second data. The first driving circuit selectively drives a matching line to a first logic state, depending on a comparison result of the first data and the second data by the storage circuit. The second driving circuit drives the matching line to a second logic state regardless of the comparison result.
Abstract:
Provided is a method of refreshing a memory device by controlling a self-refresh cycle according to temperature. In the method, first self-refresh and second self-refresh are performed according to inner temperature of the memory device and a self-refresh cycle is controlled such that an all-bank-refresh (ABR) operation is not performed simultaneously with the start of the second self-refresh. The ABR operation is performed at the start of third self-refresh when the sum of a section of the first self-refresh in which the ABR operation is not performed and a section of the second self-refresh in which the ABR operation is not performed corresponds to a self-refresh cycle.
Abstract:
A memory chip includes a chip input-output pad unit, a plurality of semiconductor dies. The chip input-output pad unit includes a plurality of input-output pins connected to an external device and the plurality of semiconductor dies are connected commonly to the chip input-output pad unit and having a full memory capacity respectively. Each semiconductor die includes a die input-output pad unit, a memory region and a conversion block. The die input-output pad unit includes a plurality of input-output terminals respectively connected to the input-output pins of the chip input-output pad unit. The memory region includes an activated region corresponding to a portion of the full memory capacity and a deactivated region corresponding to a remainder portion of the full memory capacity. The conversion block connects the activated region except the deactivated region to the die input-output pad unit.
Abstract:
A memory device includes an anti-fuse cell array including a plurality of anti-fuse cells. Each anti-fuse cell includes a first cell transistor connected to a common node, a second cell transistor connected to the common node, and an access transistor connected to the common node. The first cell transistor is configured to store data and the second cell transistor is configured to store data when the first cell transistor has defect data.
Abstract:
Methods of forming patterns of a semiconductor device are provided. The methods may include forming a hard mask film on a semiconductor substrate. The methods may include forming first and second sacrificial film patterns that are spaced apart from each other on the hard mask film. The methods may include forming a first spacer on opposing sidewalls of the first sacrificial film pattern and a second spacer on opposing sidewalls of the second sacrificial film pattern. The methods may include removing the first and second sacrificial film patterns. The methods may include trimming the second spacer such that a line width of the second spacer becomes smaller than a line width of the first spacer. The methods may include forming first and second hard mask film patterns by etching the hard mask film using the first spacer and the trimmed second spacer as an etch mask.
Abstract:
Provided are a semiconductor device and a method of fabricating the same. The device may include a transistor on a substrate comprising a gate insulating pattern, a gate electrode and an impurity region, a shared contact plug electrically connected to the gate electrode and the impurity region, and an etch-stop layer between side surfaces of the gate electrode and the shared contact. The shared contact plug may include a first conductive pattern electrically connected to the first impurity region and a second conductive pattern electrically connected to the gate electrode, and a top surface of the first conductive pattern may be higher than a top surface of the gate electrode.
Abstract:
A semiconductor device includes a substrate having first and second active regions. A first active pattern is on the first active region and includes first source/drain patterns and a first channel pattern therebetween. A second active pattern is on the second active region and includes second source/drain patterns and a second channel pattern therebetween. A gate electrode includes a first gate electrode on the first channel pattern and a second gate electrode on the second channel pattern. A gate cutting pattern is between the first and second gate electrodes and separates the first and second gate electrodes from each other. A pair of gate spacers is on opposite sidewalls of the first gate electrode extending along opposite sidewalls of the gate cutting pattern towards the second gate electrode. The gate cutting pattern includes first to third parts having maximum widths that increase from the first to the third part.
Abstract:
A semiconductor package comprises a first semiconductor chip and a second semiconductor chip. The first semiconductor chip includes a first substrate, a first semiconductor device layer disposed on the first substrate, a first chip wiring layer disposed on the first semiconductor device layer, and a first bonding pad directly connected to the first chip wiring layer and that includes a first dishing formed thereon. The second semiconductor chip includes a second substrate, a first through-via that penetrates through the second substrate, and a second bonding pad directly connected to the first through-via and that includes a second dishing formed thereon. The first semiconductor chip and the second semiconductor chip are bonded to each other and the first bonding pad and the second bonding pad face each other, and a gold bonding layer fills the first dishing of the first bonding pad and the second dishing of the second bonding pad.