摘要:
The present invention relates to a method for fabricating a semiconductor device with a last level copper-to-C4 connection that is essentially free of aluminum. Specifically, the last level copper-to-C4 connection comprises an interfacial cap structure containing CoWP, NiMoP, NiMoB, NiReP, NiWP, and combinations thereof. Preferably, the interfacial cap structure comprises at least one CoWP layer. Such a CoWP layer can be readily formed over a last level copper interconnect by a selective electroless plating process.
摘要:
A system and method for eliminating undercut when forming a C4 solder bump for BLM (Ball Limiting Metallurgy) and improving the C4 pitch. In the process, a barrier layer metal stack is deposited above a metal pad layer. A top layer of the barrier layer metals (e.g., Cu) is patterned by CMP with a bottom conductive layer of the barrier metal stack removed by etching. The diffusion barrier and C4 solder bump may be formed by electroless plating, in one embodiment, using a maskless technique, or by an electroplating techniques using a patterned mask. This allows the pitch of the C4 solder bumps to be reduced.
摘要:
Structures with improved solder bump connections and methods of fabricating such structures are provided herein. The structure includes a via formed in a dielectric layer to expose a contact pad and a capture pad formed in the via and over the dielectric layer. The capture pad has openings over the dielectric layer to form segmented features. The solder bump is deposited on the capture pad and the openings over the dielectric layer.
摘要:
Methods of forming wire and solder bonds are disclosed. In one embodiment, a method includes providing a structure including a wire bond metal region for the wire bond and a solder bond metal region for the solder bond, both regions covered by a silicon nitride layer over a silicon oxide layer; forming in a material a first opening to the silicon oxide layer over the wire bond metal region and a second opening exposing the solder bond metal region; forming the solder bond to the solder bond metal region while the wire bond metal region is covered; exposing the wire bond metal region including removing the silicon oxide layer to the wire bond metal region; and forming the wire bond to the wire bond metal region. Wire bonds and solder bonds can be made accessible on a single multi-part wafer (MPW) or on a single chip, if necessary, and can be formed substantially simultaneously.
摘要:
A semiconductor structure includes at least one bond pad. An insulator layer is on the surface of the semiconductor chip and on a portion of the bond pad. The polyimide layer comprises a bottom surface contacting and coplanar with the surface of the semiconductor chip, a top surface opposite and parallel to the bottom surface of the polyimide layer, and a sloped side between corresponding ends of the top surface of the polyimide layer and the bottom surface of the polyimide layer. The sloped side joins the bottom surface of the polyimide layer at the top surface of the bond pad. The sloped side of the polyimide layer forms an angle less than 50° with the bottom surface of the polyimide layer.
摘要:
Methods of forming wire and solder bond structures are disclosed. In one embodiment, a method includes providing a structure including a wire bond metal region for the wire bond and a solder bond metal region for the solder bond; forming a protective layer over the wire bond metal region only; forming a silicon nitride layer over a silicon oxide layer over the wire bond metal region and the solder bond metal region; forming the solder bond to the solder bond metal region while maintaining the wire bond metal region covered; exposing the wire bond metal region including removing the protective layer; and forming the wire bond to the wire bond metal region. Wire bond and solder bond structures can be made accessible on a single multi-part wafer (MPW) wafer or on a single chip, if necessary.
摘要:
A crack stop void is formed in a low-k dielectric layer between adjacent fuse structures for preventing propagation of cracks between the adjacent fuse structures during a fuse blow operation. The crack stop void is formed simultaneously with the formation of an interconnect structure.
摘要:
An integrated circuit has a wiring layer below an insulator layer. A pad comprises a conductive material that is on the insulator layer. The pad has a wirebond connection region and a probe pad region. An inspection mark is between the wirebond connection region and the probe pad region. The inspection mark comprises an opening in the insulator layer that is filled with the conductive material. In addition, a contact that is through the insulator layer is adapted to electrically connect the conductor wire in the wiring layer to the pad. The contact is formed of the same conductive material used for the pad and the inspection mark.
摘要:
Methods of forming wire and solder bonds are disclosed. In one embodiment, a method includes providing a structure including a wire bond metal region for the wire bond and a solder bond metal region for the solder bond, both regions covered by a silicon nitride layer over a silicon oxide layer; forming in a material a first opening to the silicon oxide layer over the wire bond metal region and a second opening exposing the solder bond metal region; forming the solder bond to the solder bond metal region while the wire bond metal region is covered; exposing the wire bond metal region including removing the silicon oxide layer to the wire bond metal region; and forming the wire bond to the wire bond metal region. Wire bonds and solder bonds can be made accessible on a single multi-part wafer (MPW) or on a single chip, if necessary, and can be formed substantially simultaneously.
摘要:
Methods of forming wire and solder bond structures are disclosed. In one embodiment, a method includes providing a structure including a wire bond metal region for the wire bond and a solder bond metal region for the solder bond; forming a protective layer over the wire bond metal region only; forming a silicon nitride layer over a silicon oxide layer over the wire bond metal region and the solder bond metal region; forming the solder bond to the solder bond metal region while maintaining the wire bond metal region covered; exposing the wire bond metal region including removing the protective layer; and forming the wire bond to the wire bond metal region. Wire bond and solder bond structures can be made accessible on a single multi-part wafer (MPW) wafer or on a single chip, if necessary.