Abstract:
Devices, systems, and methods for detecting molecules of interest within a collected sample are described herein. In certain embodiments, self-contained sample analysis systems are disclosed, which include a reusable reader component, a disposable cartridge component, and a disposable sample collection component. In some embodiments, the reader component communicates with a remote computing device for the digital transmission of test protocols and test results. In various disclosed embodiments, the systems, components, and methods are configured to identify the presence, absence, and/or quantity of particular nucleic acids, proteins, or other analytes of interest, for example, in order to test for the presence of one or more pathogens or contaminants in a sample.
Abstract:
Devices, systems, and methods for detecting molecules of interest within a collected sample are described herein. In certain embodiments, self-contained sample analysis systems are disclosed, which include a reusable reader component, a disposable cartridge component, and a disposable sample collection component. In some embodiments, the reader component communicates with a remote computing device for the digital transmission of test protocols and test results. In various disclosed embodiments, the systems, components, and methods are configured to identify the presence, absence, and/or quantity of particular nucleic acids, proteins, or other analytes of interest, for example, in order to test for the presence of one or more pathogens or contaminants in a sample.
Abstract:
The invention relates to a wood substrate rendered flame-retardant. The invention provides that on the substrate there is a coating and/or impregnation system with a flame retardant selected from the group consisting of room-temperature-liquid organic halogen compounds and organic phosphorus compounds and organic boron compounds, and that there is also a layer of coating material applied thereto.
Abstract:
The composition is applied in two or three parts. In a two part process, a sodium silicate/color mixture is first applied and allowed to dry. In a second part, an acid, lithium, or potassium lock-in solution is applied. In a three part application procedure, the first part is a sodium silicate mixed with a diluted water based acrylic stain of a desired color. The third part includes a sodium silicate based clear coat (with no color mixed in) that is applied over the color coat. A second part including the lock-in solution is applied over the third part clear coat.
Abstract:
The present specification discloses porous materials, methods of forming such porous materials, biocompatible implantable devices comprising such porous materials, and methods of making such biocompatible implantable devices.
Abstract:
Methods and apparatus for vacuum forming and subsequently applying topical coatings fiber-based food containers. The slurry includes one or more of an embedded moisture barrier, vapor barrier, and oil barrier, and the topical coating comprises one or more of a vapor barrier, a moisture barrier, an oil barrier, and an oxygen barrier, for example polyvinyl alcohol, sugar alcohol, citric acid, and cellulose nanofibrils.
Abstract:
The invention concerns a method of forming a medical device, the method comprising: forming a graphene film (100) over a substrate (204); depositing, by gas phase deposition, a polymer material covering a surface of the graphene film (100); and removing the substrate (204) from the graphene film (100), wherein the polymer material forms a support (102) for the graphene film (100).
Abstract:
The present invention discloses an organic polymer film and a manufacturing method thereof. The organic polymer film is mainly manufactured by the following steps. Firstly, the step (A) provides a xylene precursor and a substrate, and the step (B) places the substrate inside of a plasma equipment. After that, the step (C) evacuates the plasma equipment while introducing a carrier gas which carries vapor of the xylene precursor, and the step (D) turns on a pulse power supply system of the plasma equipment, generating a short pulse for plasma ignition. Finally, the step (E) forms the organic polymer film on the substrate. In the aforementioned steps, the frequency of the short pulse plasma is between 1 Hz˜10,000 Hz, and the pulse period of the short pulse plasma is between 1 μs˜60 μs.
Abstract:
Some variations provide a method of forming a transparent icephobic coating, comprising: obtaining a hardenable precursor comprising a first component and a plurality of inclusions containing a second component, wherein one of the first component or the second component is a low-surface-energy polymer, and the other is a hygroscopic material; applying mechanical shear and/or sonication to the hardenable precursor; disposing the hardenable precursor onto a substrate; and curing the hardenable precursor to form a transparent icephobic coating. The coating contains a hardened continuous matrix containing regions of the first component separated from regions of the second component on an average length scale of phase inhomogeneity from 10 nanometers to 10 microns, such as less than 1 micron, or less than 100 nanometers. The transparent icephobic coating may be characterized by a light transmittance of at least 50% at wavelengths from 400 nm to 800 nm, through a 100-micron coating.
Abstract:
A preparation method and a product of thermoplastic carbon fiber fabric prepreg are provided. The preparation method includes: covering a thermoplastic polyimide non-woven fabric on a carbon fiber fabric to obtain a laminated structure, pressing the laminated structure, then spraying polyphenylene sulfide nanoparticles onto the thermoplastic polyimide non-woven fabric, and performing a two-stage hot melting preparation process which includes: in a first stage, heating up to make the polyphenylene sulfide nanoparticles be melted and infiltrate and keeping a hot melting time of 5-10 min; and in a second stage, heating up to make the thermoplastic polyimide non-woven fabric be melted and infiltrate into the carbon fiber fabric and cooling down after a duration of heat preservation to prepare the thermoplastic carbon fiber fabric prepreg. The thermoplastic carbon fiber fabric prepreg prepared by the two-stage hot melting has high strength and may be stored for a long period.