HYBRID MULTI-JUNCTION PHOTOVOLTAIC CELLS AND ASSOCIATED METHODS
    33.
    发明申请
    HYBRID MULTI-JUNCTION PHOTOVOLTAIC CELLS AND ASSOCIATED METHODS 有权
    混合多结节光电池及相关方法

    公开(公告)号:US20170062648A1

    公开(公告)日:2017-03-02

    申请号:US15137696

    申请日:2016-04-25

    摘要: A multi-junction photovoltaic cell includes a substrate and a back contact layer formed on the substrate. A low bandgap Group IB-IIIB-VIB2 material solar absorber layer is formed on the back contact layer. A heterojunction partner layer is formed on the low bandgap solar absorber layer, to help form the bottom cell junction, and the heterojunction partner layer includes at least one layer of a high resistivity material having a resistivity of at least 100 ohms-centimeter. The high resistivity material has the formula (Zn and/or Mg)(S, Se, O, and/or OH). A conductive interconnect layer is formed above the heterojunction partner layer, and at least one additional single-junction photovoltaic cell is formed on the conductive interconnect layer, as a top cell. The top cell may have an amorphous Silicon or p-type Cadmium Selenide solar absorber layer. Cadmium Selenide may be converted from n-type to p-type with a chloride doping process.

    摘要翻译: 多结光伏电池包括在基板上形成的基板和背接触层。 在背面接触层上形成低带隙IB-IIIB-VIB2族材料太阳能吸收层。 异质结伙伴层形成在低带隙太阳能吸收层上,以帮助形成底部电池结,异质结伙伴层包括至少一层具有至少100欧姆 - 厘米电阻率的高电阻率材料层。 高电阻率材料具有式(Zn和/或Mg)(S,Se,O和/或OH)。 在异质结伙伴层之上形成导电互连层,并且在导电互连层上形成至少一个附加的单结光伏电池作为顶部电池。 顶部单元可以具有非晶硅或p型硒化镉太阳能吸收层。 硒化镉可以用氯化物掺杂工艺从n型转变成p型。

    Solid-state imaging device and electronic apparatus
    34.
    发明授权
    Solid-state imaging device and electronic apparatus 有权
    固态成像装置和电子装置

    公开(公告)号:US09450121B2

    公开(公告)日:2016-09-20

    申请号:US14567067

    申请日:2014-12-11

    申请人: Sony Corporation

    发明人: Koji Nagahiro

    摘要: A solid-state imaging device includes a photoelectric conversion device that includes a non-chalcopyrite-based compound semiconductor of at least one layer, which is lattice bonded or pseudo lattice bonded, and is formed on a silicon substrate, and a chalcopyrite-based compound semiconductor of at least one layer which is formed on the non-chalcopyrite-based compound semiconductor.

    摘要翻译: 固态成像装置包括:光电转换装置,其包括至少一层的非黄铜矿型化合物半导体,该化合物半导体是晶格键合或伪晶格结合的,并且形成在硅衬底上,以及基于黄铜矿的化合物 形成在非黄铜矿基化合物半导体上的至少一层的半导体。

    Normally-off gallium nitride-based semiconductor devices
    36.
    发明授权
    Normally-off gallium nitride-based semiconductor devices 有权
    通常的氮化镓基半导体器件

    公开(公告)号:US09385199B2

    公开(公告)日:2016-07-05

    申请号:US14319490

    申请日:2014-06-30

    发明人: Jamal Ramdani

    摘要: A method includes forming a relaxed layer in a semiconductor device. The method also includes forming a tensile layer over the relaxed layer, where the tensile layer has tensile stress. The method further includes forming a compressive layer over the relaxed layer, where the compressive layer has compressive stress. The compressive layer has a piezoelectric polarization that is approximately equal to or greater than a spontaneous polarization in the relaxed, tensile, and compressive layers. The piezoelectric polarization in the compressive layer could be in an opposite direction than the spontaneous polarization in the compressive layer. The relaxed layer could include gallium nitride, the tensile layer could include aluminum gallium nitride, and the compressive layer could include aluminum indium gallium nitride.

    摘要翻译: 一种方法包括在半导体器件中形成松弛层。 该方法还包括在松弛层上形成拉伸层,其中拉伸层具有拉伸应力。 该方法还包括在松弛层上形成压缩层,其中压缩层具有压应力。 压缩层具有大致等于或大于松弛,拉伸和压缩层中的自发极化的压电极化。 压缩层中的压电极化可能与压缩层中的自发极化方向相反。 松弛层可以包括氮化镓,拉伸层可以包括氮化镓铝,并且压缩层可以包括铝铟镓氮。

    Variable range photodetector and method thereof
    37.
    发明授权
    Variable range photodetector and method thereof 有权
    可变范围光电检测器及其方法

    公开(公告)号:US09379271B2

    公开(公告)日:2016-06-28

    申请号:US14285964

    申请日:2014-05-23

    摘要: A method of making and a photodetector comprising a substrate; a p-type or n-type layer; first and second region each having polarizations, a first interface therebetween, the magnitudes and directions of the first and second polarizations being such that a scalar projection of second polarization on the growth direction relative to the scalar projection of the first polarization projected onto the growth direction is sufficient to create a first interface charge; and a third region suitable for forming one of an n-metal or p-metal contact thereon having a third polarization, a second interface between the second and third regions, the third polarization having a scalar projection on the growth direction that, relative to scalar projection of the second polarization onto the growth direction, is sufficient to create a second interface charge; the first and second interface charges creating an electrostatic potential barrier to carriers defining a predetermined wavelength range.

    摘要翻译: 一种制造方法和一种包括基底的光电探测器; p型或n型层; 每个具有偏振的第一和第二区域,其间的第一界面,所述第一和第二偏振的幅度和方向使得相对于投射到生长方向上的第一偏振的标量投影的生长方向上的第二偏振的标量投影 足以创建第一接口电荷; 以及第三区域,适于形成其上具有第三偏振的第一极化的第一极化,第二和第三区之间的第二界面之间的n金属或p金属接触之一,所述第三极化在生长方向上具有标量投影,相对于标量 将第二偏振投影到生长方向上足以产生第二界面电荷; 所述第一和第二界面电荷为限定预定波长范围的载流子产生静电势垒。

    Nitride semiconductor light-emitting element
    40.
    发明授权
    Nitride semiconductor light-emitting element 有权
    氮化物半导体发光元件

    公开(公告)号:US09324908B2

    公开(公告)日:2016-04-26

    申请号:US14653703

    申请日:2014-03-28

    摘要: Provided is a nitride semiconductor light-emitting element including in order a first n-type nitride semiconductor layer, a second n-type nitride semiconductor layer, an n-type electron-injection layer, a light-emitting layer, and a p-type nitride semiconductor layer, wherein the average n-type dopant concentration of the second n-type nitride semiconductor layer is 0.53 times or less as high as the average n-type dopant concentration of the first n-type nitride semiconductor layer, and the average n-type dopant concentration of the n-type electron-injection layer is 1.5 times or more as high as the average n-type dopant concentration of the second n-type nitride semiconductor layer.

    摘要翻译: 本发明提供一种氮化物半导体发光元件,其依次包括第一n型氮化物半导体层,第二n型氮化物半导体层,n型电子注入层,发光层和p型 氮化物半导体层,其中第二n型氮化物半导体层的平均n型掺杂剂浓度为第一n型氮化物半导体层的平均n型掺杂剂浓度的0.53倍以下,平均n n型电子注入层的掺杂浓度为第二n型氮化物半导体层的平均n型掺杂剂浓度的1.5倍以上。