Abstract:
A semiconductor chip assembly includes a semiconductor chip that includes a conductive pad, a conductive trace that includes a pillar and a routing line, and a ground plane. The pillar is press-fit into an opening in the ground plane, and the ground plane is electrically connected to the pad.
Abstract:
A method of making a semiconductor chip assembly includes providing a metal base that includes a metal plate and a metal layer, providing a routing line that contacts the metal layer and an etch mask that contacts the metal plate, providing a semiconductor chip that includes a conductive pad, mechanically attaching the chip to the routing line, electrically connecting the routing line to the pad, and etching the metal base using a first wet chemical that is selective of the metal plate and then a second wet chemical etch that is selective of the metal layer and the etch mask to form a pillar from an unetched portion of the metal base that contacts the routing line.
Abstract:
A method of connecting a conductive trace and an insulative base to a semiconductor chip includes providing a semiconductor chip, a metal base, an insulative base, a routing line and an interconnect, wherein the chip includes a conductive pad, the metal base is disposed on a side of the insulative base that faces away from the chip, the routing line is disposed on a side of the insulative base that faces towards the chip, and the interconnect extends through a via in the insulative base and electrically connects the metal base and the routing line, forming an opening that extends through the insulative base and exposes the pad, forming a connection joint that electrically connects the routing line and the pad, and etching the metal base such that an unetched portion of the metal base forms a pillar that overlaps and is aligned with the via and contacts the interconnect, wherein a conductive trace includes the routing line, the interconnect and the pillar. Preferably, the opening extends through an insulative adhesive that attaches the routing line to the chip.
Abstract:
A method of making a semiconductor chip assembly includes providing a semiconductor chip, a metal base, an insulative base and a conductive trace, wherein the chip includes a conductive pad, the metal base is disposed on a side of the insulative base that faces away from the chip, the conductive trace includes a contact terminal that extends through the insulative base, and the pad is exposed through an opening that extends through the metal base and the insulative base and is spaced from the contact terminal, then forming a connection joint that contacts and electrically connects the conductive trace and the pad, and then removing a portion of the metal base that contacts the contact terminal. Preferably, the opening extends through an insulative adhesive that attaches the chip to the conductive trace.
Abstract:
A method of making a semiconductor chip assembly includes providing a semiconductor chip, a conductive trace and a substrate, wherein the chip includes first and second opposing major surfaces and a conductive pad, the pad extends to the first surface of the chip, the substrate includes first and second opposing major surfaces, a conductive terminal and a dielectric base, the conductive terminal extends through the dielectric base to the first and second surfaces of the substrate, a cavity extends from the first surface of the substrate into the substrate, the first surfaces of the chip and the substrate face in a first direction, the second surfaces of the chip and the substrate face in a second direction, and the chip extends into the cavity, and then electrically connecting the conductive terminal to the pad using the conductive trace.
Abstract:
A three-dimensional stacked semiconductor package includes first and second semiconductor chip assemblies and a conductive bond. The first semiconductor chip assembly includes a first semiconductor chip and a first conductive trace with a first routing line and a first pillar. The second semiconductor chip assembly includes a second semiconductor chip and a second conductive trace with a second routing line and a second pillar. The chips are aligned with one another, and the pillars are disposed outside the peripheries of the chips and aligned with one another. The conductive bond contacts and electrically connects the pillars.
Abstract:
A method of manufacturing a support circuit includes providing a conductive layer with top and bottom surfaces,,providing a top etch mask on the top surface that includes an opening that exposes a portion of the top surface, providing a bottom etch mask on the bottom surface that includes an opening that exposes a portion of the bottom surface, applying an etch to the exposed portion of the top surface through the opening in the top etch mask, thereby etching partially but not completely through the conductive layer and forming a recessed portion in the conductive layer below the top surface, forming an insulative base on the recessed portion without forming the insulative base on the top surface, and applying an etch to the exposed portion of the bottom surface through the opening in the bottom etch mask, thereby forming a routing line in the recessed portion that extends to and is covered by the insulative base.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and first and second adhesives. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The heat spreader includes a post and a base. The post extends upwardly from the base through an opening in the first adhesive, and the base extends laterally from the post. The first adhesive extends between the base and the conductive trace and the second adhesive extends between the post and the conductive trace. The conductive trace provides signal routing between a pad and a terminal.
Abstract:
A method of making a semiconductor assembly that includes a semiconductor device, a heat spreader, an adhesive and a build-up circuitry is disclosed. The heat spreader includes a bump, a base and a flange. The bump defines a cavity. The semiconductor device is mounted on the bump at the cavity, electrically connected to the build-up circuitry and thermally connected to the bump. The bump extends from the base into an opening in the adhesive, the base extends vertically from the bump opposite the cavity and the flange extends laterally from the bump at the cavity entrance. The build-up circuitry includes a dielectric layer and conductive traces on the semiconductor device and the flange. The conductive traces provide signal routing for the semiconductor device.
Abstract:
A hybrid wiring board includes an interposer, a stopper, a stiffener and a build-up circuitry. The stopper is laterally aligned with and laterally extends beyond peripheral edges of the interposer in lateral directions. The interposer extends into an aperture of the stiffener and is electrically connected to the build-up circuitry. The build-up circuitry covers the stopper, the interposer and the stiffener and provides signal routing for the interposer. The stiffener provides mechanical support, ground/power plane and heat sink for the build-up circuitry.