Abstract:
A fabricating method of a semiconductor light emitting device includes disposing a plurality of non-conductive walls on a substrate. An alignment position is formed between every two adjacent non-conductive walls. A plurality of semiconductor light emitting units on a first carrier board are respectively aligned to the alignment positions. The semiconductor light emitting units are divided into a plurality of groups. The semiconductor light emitting units in one of the groups are dissociated from the first carrier board. Thus, the semiconductor light emitting units in the group fall into the corresponding alignment positions due to gravity. Each of the semiconductor light emitting units is electrically connected with the substrate through a first electrode. A conductive layer is formed on the semiconductor light emitting units. Accordingly, the semiconductor light emitting units are electrically connected together to the conductive layer through second electrodes.
Abstract:
A chip packaging includes a substrate, a first chip, a molding material, a first circuit, and a second circuit. The substrate includes a bottom surface, a first top surface disposed above the bottom surface with a first height, and a second top surface disposed above the bottom surface with a second height. The first height is smaller than the second height. The first chip is disposed on the first top surface. The molding material is disposed on the substrate and covers the first chip. The first and second circuits are disposed on the molding material, and are respectively and electrically connected to the first chip and the second top surface of the substrate. The substrate is made of copper material with huge area and has the properties of high current withstand capacity and high thermal efficiency. The second top surface protects the first chip from damage.
Abstract:
In an embodiment, a light emitting device comprises a light emitting diode chip and a spherical extending electrode. The light emitting diode chip includes a semiconductor epitaxial structure, a first electrode and a second electrode. The first electrode and the second electrode are disposed on two opposite sides of the semiconductor epitaxial structure, respectively. The first electrode is disposed between the semiconductor epitaxial structure and the spherical extending electrode, and the spherical extending electrode is electrically connected to the semiconductor epitaxial structure electrically through the first electrode. The volume of the spherical extending electrode is greater than that of the light emitting diode chip.
Abstract:
A solder and a solder joint structure formed by the solder are provided. The solder includes a zinc-based material, a copper film, and a noble metal film. The copper film completely covers the surface of the zinc-based material. The noble metal film completely covers the copper film. The solder joint structure includes a zinc-based material and an intermetallic layer. The intermetallic layer consists of zinc and noble metal and completely covers the surface of the zinc-based material.
Abstract:
A power module for high/low voltage insulation is provided. The power module includes a first substrate, a second substrate and an insulating substrate. The first substrate includes a first control circuit and a light source, wherein the first control circuit controls the light source to emit light. The second substrate includes a light-sensing part, a second control circuit and a power device. The light-sensing part receives the light of the light source of the first substrate to send a sensing information. The second control circuit correspondingly drives the power device in accordance with the sensing information. The insulating substrate is disposed between the first substrate and second substrate.