Structure and method for self-aligned, index-guided, buried heterostructure AlGalnN laser diodes
    47.
    发明授权
    Structure and method for self-aligned, index-guided, buried heterostructure AlGalnN laser diodes 有权
    AlCalnN激光二极管的自对准,折射率引导,掩埋异质结构的结构和方法

    公开(公告)号:US06567443B2

    公开(公告)日:2003-05-20

    申请号:US09408415

    申请日:1999-09-29

    IPC分类号: H01S500

    摘要: A self aligned, index-guided, buried heterostructure AlGalnN laser diode provides improved mode stability and low threshold current when compared to conventional ridge waveguide structures. A short period superlattice is used to allow adequate cladding layer thickness for confinement without cracking. The intensity of the light lost due to leakage is reduced by about 2 orders of magnitude with an accompanying improvement in the far-field radiation pattern when compared to conventional structures. The comparatively large p-contact area allowed by the self-aligned architecture contributes to a lower diode voltage and less heat during continuous wave operation of the laser diode.

    摘要翻译: 与传统的脊波导结构相比,自对准,折射率引导,埋入异质结AlGalnN激光二极管提供了改进的模式稳定性和低阈值电流。 短周期超晶格用于允许足够的包层厚度进行约束而不会开裂。 与常规结构相比,由于泄漏而损失的光的强度降低了约2个数量级,伴随着远场辐射图的改进。 自对准结构允许的较大的p接触面积有助于在激光二极管的连续波动操作期间较低的二极管电压和较少的热量。

    Algainn elog led and laser diode structures for pure blue or green emission
    49.
    发明授权
    Algainn elog led and laser diode structures for pure blue or green emission 有权
    Algainn elog led和激光二极管结构,用于纯蓝色或绿色发射

    公开(公告)号:US06345063B1

    公开(公告)日:2002-02-05

    申请号:US09363251

    申请日:1999-07-28

    IPC分类号: H01S319

    CPC分类号: H01L33/32 H01L33/007

    摘要: Group III-V nitride semiconductors are used as optoelectronic light emitters. The semiconductor alloy InGaN is used as the active region in nitride laser diodes and LEDs, as its bandgap energy can be tuned by adjusting the alloy composition, to span the entire visible spectrum. InGaN layers of high-indium content, as required for blue or green emission are difficult to grow, however, because the poor lattice mismatch between GaN and InGaN causes alloy segregation. In this situation, the inhomogeneous alloy composition results in spectrally impure emission, and diminished optical gain. To suppress segregation, the high-indium-content InGaN active region may be deposited over a thick InGaN layer, substituted for the more typical GaN. First depositing a thick InGaN layer establishes a larger lattice parameter than that of GaN. Consequently, a high indium content heterostructure active region grown over the thick InGaN layer experiences significantly less lattice mismatch compared to GaN. Therefore, it is less likely to suffer structural degradation due to alloy segregation. Thus, the thick GaN structure enables the growth of a high indium content active region with improved structural and optoelectronic properties, leading to LEDs with spectrally pure emission, and lower threshold laser diodes.

    摘要翻译: III-V族氮化物半导体用作光电子发光体。 半导体合金InGaN用作氮化物激光二极管和LED中的有源区,因为其带隙能量可以通过调整合金组成来调整,以跨越整个可见光谱。 然而,蓝色或绿色发射所需的高铟含量的InGaN层难以生长,但是由于GaN和InGaN之间的不良晶格失配导致合金偏析。 在这种情况下,不均匀的合金组成导致光谱不纯的发射,并减少了光学增益。 为了抑制偏析,可以在厚的InGaN层上沉积高铟含量的InGaN有源区,代替更典型的GaN。 首先沉积厚的InGaN层形成比GaN更大的晶格参数。 因此,与GaN相比,在厚的InGaN层上生长的高铟含量的异质结构有源区域的晶格失配明显减少。 因此,由于合金分离而不太可能遭受结构劣化。 因此,厚的GaN结构能够增加具有改进的结构和光电性质的高铟含量活性区域,导致具有光谱纯发射的LED和较低阈值的激光二极管。