Abstract:
A semiconductor multiple package module (10) on a PCB material substrate (18) is provided, wherein semiconductor dice are directly mounted onto the PCB material substrate (18) thereby eliminating a subsequent board mounting at the customer level. A plurality of semiconductor dice are mounted and electrically connected to a plurality of circuit traces (22) on the PCB material substrate (18) having a plurality of edge connectors (20). The plurality of circuit traces (22) has conductive paths to electrically interconnect the semiconductor dice to the edge connectors (20) and to each other. The semiconductor dice are directly overmolded on the PCB material substrate (18) with a molding compound to form individual semiconductor devices (12, 14, and 16) having separate package bodies. The individualized package bodies enable repair to the module by making removal of only nonfunctional semiconductor devices from the PCB material substrate (18) possible.
Abstract:
A low cost manufacturing method is used to fabricate a small multichip semiconductor device (30). In one embodiment, a pattern of conductive traces (13) is formed on a film of transfer material (12). A first semiconductor die (15) is interconnected to the traces and a resin body (20) is formed around the first die and one side of the traces. The film of transfer material forms, at this stage of the process, one side of the first package. The film of transfer material is then peeled from the pattern of conductive traces and the first resin body to expose the other side of the traces. A second semiconductor die (23) is interconnected to the exposed side of the traces. A second resin body (25) is formed around the second die and portions of the exposed traces. Solder balls (26) are coupled to the exposed portions of the traces to establish external electrical connections to each die.
Abstract:
A semiconductor device (10) having first and second wiring layers (30, 33) on opposite surfaces of a carrier substrate (12) interconnected through vias (32) formed in the carrier substrate (12) electrically coupling an electronic component (18) to a mounting substrate through compliant solder balls (26) displaced away from vias (32), the semiconductor device (10) characterized by a standard size carrier substrate (12) having high performance electrical package interconnections (24) and good heat dissipation. Improved electrical performance is obtained by providing independent wiring layers (30, 33) each having a lead trace layout specifically designed for a particular electronic component (18) and a particular board connection requirement while using a standard size package outline. Assembly costs are reduced by providing a plastic package mold (36) over a standard size carrier substrate (12) capable of supporting a variety of different electronic components (18) themselves having varying dimensions.
Abstract:
A pad array electronic device for mounting on a substrate, such as a printed circuit board (PCB), has a relatively rigid package body with a plurality of holes bearing connecting mechanisms for bonding to lands on the PCB. The package body may be a thermoset plastic or other material that can be injection molded around an electronic component, such as an integrated circuit (IC) bonded to a lead frame. An integrated circuit die or other electronic component is mounted in proximity with or on the lead frame and electrical connections between the integrated circuit chip and the frame are made by any conventional means. In one aspect, the substrate leads are provided at their outer ends that are exposed by holes in the package with solder balls or pads for making connections to the PCB. The package body may be optionally used to stand off the device a set distance from the PCB so that the solder balls will form the proper concave structure. The periphery of the package body may function as a carrier structure to protect the lead or connection structures during testing, handling and board mounting. The open vias permit back side testing of the device before or after mounting of the package to the PCB. Additionally, a heat sink structure and/or capacitor may be directly bonded to the side or the top of the pad array electronic device which may be used singly or in multiple, stacked configurations, to facilitate the thermal dissipation from the device.
Abstract:
An electronic component having a flexible substrate with conductive traces thereon may have the leads separated into arrays that are shaped to contact and be surface mounted to the bonding lands on a printed circuit board (PCB). The flexible substrate, such as polyimide, adheres to the traces and is formed into lead arrays with them. The lead arrays thus keep portions of the leads and the outer bonding areas corresponding thereto aligned with respect to each other during handling and mounting to the PCB. An alignment mechanism may be optionally present on the lead arrays that mates with a corresponding mechanism on the PCB. The package body itself may be overmolded, assembled from prior parts, etc. Another alternate version includes test points on the perimeter of the substrate beyond the outer bonding areas that may be used to test the device, such as an integrated circuit chip or die, at an intermediate stage in the assembly process. The periphery and test points may be sheared away before the package is mounted to the PCB. A variety of outer bonding area pitches may be provided on the same package with test points of a standard pitch. The relatively inexpensive device is thin and easily mounted by conventional techniques.
Abstract:
A mounting means for a semiconductor integrated circuit, the mounting means comprising a semiconductor material having a mounting surface as one major surface thereof, a semiconductor integrated circuit mounted on the major surface of the semiconductor material, and means for electrically connecting the integrated circuit to the semiconductor material. The mounting means has a coefficient of thermal expansion similar to the semiconductor integrated circuit mounted thereon.