Abstract:
A method and apparatus for forming a flowable film are described. The method includes providing an oxygen free precursor gas mixture to a processing chamber containing a substrate. The oxygen free precursor gas is activated by exposure to UV radiation in the processing chamber. Molecular fragments resulting from the UV activation are encouraged to deposit on the substrate to form a flowable film on the substrate. The substrate may be cooled to encourage deposition. The film may be hardened by heating and/or by further exposure to UV radiation.
Abstract:
An extreme ultraviolet mirror or blank production system includes: a first deposition system for depositing a planarization layer over a semiconductor substrate; a second deposition system for depositing an ultra-smooth layer over the planarization layer, the ultra-smooth layer having reorganized molecules; and a third deposition system for depositing a multi-layer stack over the ultra-smooth layer. The extreme ultraviolet blank includes: a substrate; a planarization layer over the substrate; an ultra-smooth layer over the planarization layer, the ultra-smooth layer having reorganized molecules; a multi-layer stack; and capping layers over the multi-layer stack. An extreme ultraviolet lithography system includes: an extreme ultraviolet light source; a mirror for directing light from the extreme ultraviolet light source; a reticle stage for placing an extreme ultraviolet mask blank with a planarization layer and an ultra-smooth layer over the planarization layer; and a wafer stage for placing a wafer.
Abstract:
A method of forming and controlling air gaps between adjacent raised features on a substrate includes forming a silicon-containing film in a bottom region between the adjacent raised features using a flowable deposition process. The method also includes forming carbon-containing material on top of the silicon-containing film and forming a second film over the carbon-containing material using a flowable deposition process. The second film fills an upper region between the adjacent raised features. The method also includes curing the materials at an elevated temperature for a period of time to form the air gaps between the adjacent raised features. The thickness and number layers of films can be used to control the thickness, vertical position and number of air gaps.
Abstract:
Methods and corresponding photoresists are described for fine linewidth lithography using x-rays, e-beams, visible spectrum optical lithography, ultra-violet optical lithography or extreme ultra-violet lithography. The methods include the formation of a photoresist film including a dopant having an atomic mass greater than or equal to twenty two. The dopant may be introduced daring the formation of the photoresist. The photoresist includes the dopant to increase the absorption of radiation during lithography. The photoresist may be silicon-, germanium or carbon-based photoresists.
Abstract:
A method includes obtaining a base structure of an electronic device, the base structure including at least one opening, and forming, using a reactive-ion deposition process, a dielectric material within the at least one opening.
Abstract:
Methods for forming defect-free gap fill materials comprising germanium oxide are disclosed. In some embodiments, the gap fill material is deposited by exposing a substrate surface to a germane precursor and an oxidant simultaneously. The germane precursor may be flowed intermittently. The substrate may also be exposed to a second oxidant to increase the relative concentration of oxygen within the gap fill material. A process for removal of germanium oxide is also disclosed.
Abstract:
Exemplary methods of semiconductor processing may include providing deposition precursors to a processing region of a semiconductor processing chamber. The deposition precursors may include a silicon-containing precursor and a metal-containing precursor. The silicon-containing precursor and the metal-containing precursor may be fluidly isolated prior to reaching the processing region. A substrate may be housed within the processing region. The methods may include generating plasma effluents of the deposition precursors. The methods may include forming a layer of silicon-and-metal-containing material on the substrate.
Abstract:
Exemplary methods of semiconductor processing may include providing deposition precursors to a processing region of a semiconductor processing chamber. The deposition precursors may include a silicon-and-halogen-containing precursor and a metal-containing precursor. A substrate may be housed within the processing region. The methods may include generating plasma effluents of the deposition precursors. The methods may include forming a layer of silicon-and-metal-containing material on the substrate.
Abstract:
Semiconductor devices (e.g., gate-all-around (GAA) devices), process tools for manufacturing GAA devices and methods of manufacturing GAA devices, and inner spacer liners and inner spacers for GAA devices, are described. The methods comprise performing a chemical vapor deposition (CVD) process to form an amorphous silicon liner and an inner spacer within a superlattice structure formed on a top surface of a semiconductor substrate. The superlattice structure has a plurality of semiconductor material layers (e.g., silicon germanium (SiGe)) and a corresponding plurality of channel layers (e.g., silicon (Si)). The amorphous silicon liner is conformally formed along the GAA device, including along the recessed semiconductor material layers and the corresponding plurality of channel layers, and the inner spacer is formed directly on the amorphous silicon liner. One or more operations of the methods described herein are performed in situ in an integrated processing tool system.
Abstract:
Methods of selectively depositing a selectively deposited layer are described. Exemplary processing methods may include treating a substrate comprising a non-hydroxyl-containing surface and a second surface with one or more of ozone, hydrogen peroxide, or a hydrogen plasma to passivate the second surface. In one or more embodiments, a selectively deposited layer is then selectively deposited on the non-hydroxyl-containing surface and not on the second surface by flowing a first precursor over the substrate to form a first portion of an initial carbon-containing film on the non-hydroxyl-containing surface and not on the second surface. The methods may include removing a first precursor effluent from the substrate. A second precursor may then be flowed over the substrate to react with the first portion of the initial selectively deposited layer. The methods may include removing a second precursor effluent from the substrate.